Surface generation on titanium alloy through powder-mixed electric discharge machining with the focus on bioimplant applications

[1]  S. Anwar,et al.  A Comprehensive Analysis of the Effect of Graphene-Based Dielectric for Sustainable Electric Discharge Machining of Ti-6Al-4V , 2020, Materials.

[2]  Fatema Tuj Zohura,et al.  Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review , 2020 .

[3]  A. Khan,et al.  Curved profiles machining of Ti6Al4V alloy through WEDM: investigations on geometrical errors , 2020 .

[4]  C. Pruncu,et al.  Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. , 2020, Journal of the mechanical behavior of biomedical materials.

[5]  T. Muthuramalingam,et al.  Experimental Investigation of White Layer Formation on Machining Silicon Steel in PMEDM Process , 2020, Silicon.

[6]  T. Muthuramalingam,et al.  Influence of micro size titanium powder-mixed dielectric medium on surface quality measures in EDM process , 2020, The International Journal of Advanced Manufacturing Technology.

[7]  A. Al-Ahmari,et al.  On the Investigation of Surface Integrity of Ti6Al4V ELI Using Si-Mixed Electric Discharge Machining , 2020, Materials.

[8]  S. Ramakrishna,et al.  Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials , 2020, Coatings.

[9]  S. Ramalingam,et al.  Enhancing the Surface Quality of Micro Titanium Alloy Specimen in WEDM Process by Adopting TGRA-Based Optimization , 2020, Materials.

[10]  Ayanesh Y. Joshi,et al.  A systematic review on powder mixed electrical discharge machining , 2019, Heliyon.

[11]  A. Giridharan,et al.  Investigation on EDM machining of Ti6Al4V with negative polarity brass electrode , 2019, Materials and Manufacturing Processes.

[12]  Chetan,et al.  Bioactive coating as a surface modification technique for biocompatible metallic implants: a review , 2019, Journal of Asian Ceramic Societies.

[13]  A. Schubert,et al.  Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces , 2019, Journal of Manufacturing Processes.

[14]  M. Jahan,et al.  A Study on the Surface Composition and Migration of Materials and Their Effect on Surface Microhardness during Micro-EDM of Ti-6Al-4V , 2019, Journal of Materials Engineering and Performance.

[15]  T. Muthuramalingam,et al.  Influence of process factors on surface measures on electrical discharge machined stainless steel using TOPSIS , 2019, Materials Research Express.

[16]  B. Doloi,et al.  An experimental and computational study on the feasibility of bio-dielectrics for sustainable electrical discharge machining , 2019, Journal of Manufacturing Processes.

[17]  Tahsin Tecelli Öpöz,et al.  Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Application , 2019, International Journal of Advances in Engineering and Pure Sciences.

[18]  S. Anwar,et al.  EDM of Ti-6Al-4V: Electrode and polarity selection for minimum tool wear rate and overcut , 2019, Materials and Manufacturing Processes.

[19]  T. Albrektsson,et al.  On osseointegration in relation to implant surfaces. , 2019, Clinical implant dentistry and related research.

[20]  P. Nguyen,et al.  Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining , 2018, The International Journal of Advanced Manufacturing Technology.

[21]  S. Pujari,et al.  Surface Modification of Ti6Al4V Alloy Using EDMed Electrode Made with Nano- and Micron-Sized TiC/Cu Powder Particles , 2018, Arabian Journal for Science and Engineering.

[22]  Ashok Kumar Sahoo,et al.  Machining of Ti-6Al-4V ELI Alloy: A brief review , 2018, IOP Conference Series: Materials Science and Engineering.

[23]  K. Saptaji,et al.  Machining of biocompatible materials: a review , 2018 .

[24]  Fengzhou Fang,et al.  State of the art of bioimplants manufacturing: part I , 2018 .

[25]  T. Ginta,et al.  A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants , 2017 .

[26]  Muhammad P. Jahan,et al.  Optimization of process parameters in micro-EDM of Ti-6Al-4V based on full factorial design , 2017, The International Journal of Advanced Manufacturing Technology.

[27]  B. S. Pabla,et al.  Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy , 2017 .

[28]  M. Shabgard,et al.  Effects of simultaneous ultrasonic vibration of tool and addition of carbon nanotube into the dielectric in EDM process on machining outputs and surface integrity of Ti-6Al-4V alloy , 2017 .

[29]  B. Gligorijevic,et al.  Surface structural heterogeneity of high power plasma-sprayed hydroxyapatite coatings , 2016 .

[30]  M. Ali,et al.  Electrical Discharge Machining (EDM): A Review , 2016 .

[31]  M. Jamil,et al.  Optimization of Electrode Material for EDM Die-sinking of Titanium Alloy Grade 5 - Ti6Al4V , 2016 .

[32]  B. S. Pabla,et al.  Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: A review , 2016 .

[33]  B. S. Pabla,et al.  Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining , 2015, Journal of Materials Engineering and Performance.

[34]  Pooja Arora,et al.  Implant biomaterials: A comprehensive review. , 2015, World journal of clinical cases.

[35]  Calin S. Moucha,et al.  Antibacterial Surface Treatment for Orthopaedic Implants , 2014, International journal of molecular sciences.

[36]  Y. Wong,et al.  Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718 , 2014 .

[37]  Teofil Jesionowski,et al.  Zinc Oxide—From Synthesis to Application: A Review , 2014, Materials.

[38]  Qinhe Zhang,et al.  Machining efficiency of powder mixed near dry electrical discharge machining based on different material combinations of tool electrode and workpiece electrode , 2013 .

[39]  J. Park,et al.  Engineering biocompatible implant surfaces , 2013 .

[40]  M. Ghoreishi,et al.  A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters , 2013 .

[41]  M. Bačáková,et al.  Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics. , 2012, Journal of the mechanical behavior of biomedical materials.

[42]  L. Yin,et al.  ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. , 2011, Biomedical and environmental sciences : BES.

[43]  Yuebin B. Guo,et al.  Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti–6Al–4V surfaces , 2011 .

[44]  P. Corengia,et al.  Effect of surface treatments on the fatigue life of titanium for biomedical applications. , 2010, Journal of the mechanical behavior of biomedical materials.

[45]  S. Abdulkareem,et al.  Cooling Effect on Electrode and Process Parameters in EDM , 2010 .

[46]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[47]  Norliana Mohd Abbas,et al.  A review on current research trends in electrical discharge machining (EDM) , 2007 .

[48]  Fu-Chen Chen,et al.  Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil , 2005 .

[49]  D. Landolt,et al.  Differential regulation of osteoblasts by substrate microstructural features. , 2005, Biomaterials.

[50]  I. Puertas,et al.  Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co , 2004 .

[51]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .

[52]  Mitsuo Niinomi,et al.  Recent research and development in titanium alloys for biomedical applications and healthcare goods , 2003 .

[53]  J. Bernard,et al.  Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. , 2002, Clinical oral implants research.

[54]  W. L. Vasconcelos,et al.  Corrosion resistance of stainless steel coated with sol–gel silica , 2000 .

[55]  L. Nolte,et al.  Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. , 1999, Journal of biomedical materials research.

[56]  A. Wennerberg The importance of surface roughness for implant incorporation , 1998 .

[57]  V P Thompson,et al.  Effects of sandblasting and silica-coating procedures on pure titanium. , 1994, Journal of dentistry.

[58]  P. Branemark,et al.  Clinical aspects of osseointegration in joint replacement. A histological study of titanium implants. , 1988, The Journal of bone and joint surgery. British volume.

[59]  Rabin Kumar Das,et al.  Analysis of MRR and Surface Roughness in Machining Ti-6Al-4V ELI Titanium Alloy Using EDM Process , 2018 .

[60]  Tomadi Siti Haryani,et al.  Analysis of the Influence of EDM Parameters on Surface Quality, Material Removal Rate and Electrode Wear of Tungsten Carbide , 2009 .

[61]  Yunzhi Yang,et al.  A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. , 2005, Biomaterials.

[62]  T. Yue,et al.  Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement , 2002 .