A comparison of parallel solvers for the incompressible Navier–Stokes equations

Abstract.The paper compares coupled multigrid methods and pressure Schur complement schemes (operator splitting schemes) for the solution of the steady state and time dependent incompressible Navier–Stokes equations. We consider pressure Schur complement schemes with multigrid as well as single grid methods for the solution of the Schur complement problem for the pressure. The numerical tests have been carried out on benchmark problems using a MIMD parallel computer. They show the superiority of the coupled multigrid methods for the considered class of problems.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  Marian Brezina,et al.  Algebraic Multigrid on Unstructured Meshes , 1994 .

[3]  Katsushi Ohmori,et al.  A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations , 1984 .

[4]  Volker John,et al.  International Journal for Numerical Methods in Fluids Numerical Performance of Smoothers in Coupled Multigrid Methods for the Parallel Solution of the Incompressible Navier – Stokes Equations , 2022 .

[5]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[6]  Panayot S. Vassilevski,et al.  Preconditioning Mixed Finite Element Saddle‐point Elliptic Problems , 1996 .

[7]  Friedhelm Schieweck,et al.  A Parallel Multigrid Algorithm for Solving the Navier-Stokes Equations , 1993, IMPACT Comput. Sci. Eng..

[8]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[9]  Volker John On the Parallel Performance of Coupled Multigrid Methods for the Solution of Incompressible Navier-Stokes Equations , 1997, LSSC.

[10]  Peter Oswald On a hierarchical basis multilevel method with nonconforming P1 elements , 1992 .

[11]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[12]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[13]  S. Vanka Block-implicit multigrid calculation of two-dimensional recirculating flows , 1986 .

[14]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[15]  Owe Axelsson,et al.  Scalable algorithms for the solution of Navier's equations of elasticity , 1995 .

[16]  Anton Schüller,et al.  Multigrid methods on parallel computers - A survey of recent developments , 1991, IMPACT Comput. Sci. Eng..

[17]  Peter Bastian,et al.  Parallele adaptive Mehrgitterverfahren , 1994 .

[18]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  R. D. Lonsdale,et al.  AN ALGEBRAIC MULTIGRID SOLVER FOR THE NAVIER—STOKES EQUATIONS ON UNSTRUCTURED MESHES , 1993 .

[21]  Thomas K. Caughey,et al.  The Benchmark Problem , 1998 .

[22]  Lutz Tobiska,et al.  An optimal order error estimate for an upwind discretization of the Navier—Stokes equations , 1996 .

[23]  G. Wittum Multi-grid methods for stokes and navier-stokes equations , 1989 .