The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage

Abstract In this paper, a continuum damage mechanics based fatigue model is used to evaluate the effect of surface scratches resulting from accidental scrapes on the fatigue life of structures. First, a dynamic analysis is conducted to simulate scratch generation. Second, the initial damage field caused by plastic deformation in the scraping process is calculated. Third, for structures with scratches under fatigue loading, Chaudonneret’s damage model for multiaxial fatigue is applied and the finite element implementation is presented. At last, this method is applied to life calculation for scratched specimens and for a scratched fixed plate. The theoretical calculation tallies with the experimental results.

[1]  Sean B. Leen,et al.  Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue , 2012 .

[2]  A. S. Branis,et al.  Finite element simulation of chip formation in orthogonal metal cutting , 2001 .

[3]  Jean-Louis Chaboche,et al.  A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .

[4]  Xing Zhang,et al.  Damage mechanics method for fatigue life prediction of Pitch-Change-Link , 2010 .

[5]  R. Seshadri The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications , 1991 .

[6]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[7]  Shenmin Zhang,et al.  Notch effect on multiaxial low cycle fatigue , 2011 .

[8]  Jean-Louis Chaboche,et al.  Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .

[9]  V. Astakhov Tribology of metal cutting , 2006 .

[10]  G. A. Webster,et al.  Residual stress distributions and their influence on fatigue lifetimes , 2001 .

[11]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[12]  Jaap Schijve,et al.  Fatigue of structures and materials , 2001 .

[13]  Darrell F. Socie,et al.  Fatigue-life prediction using local stress-strain concepts , 1977 .

[14]  A. J. Mcevily,et al.  Fatigue notch sensitivity and the notch size effect , 2008 .

[15]  Roberto Tovo,et al.  An invariant-based approach for high-cycle fatigue calculation , 2009 .

[16]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[17]  Gary R. Halford,et al.  Investigation of residual stress relaxation under cyclic load , 2001 .

[18]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[19]  John S. Agapiou,et al.  Metal Cutting Theory and Practice , 1996 .

[20]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[21]  José Alexander Araújo,et al.  Multiaxial fatigue: a stress based criterion for hard metals , 2005 .

[22]  Madeleine Chaudonneret,et al.  A Simple and Efficient Multiaxial Fatigue Damage Model for Engineering Applications of Macro-Crack Initiation , 1993 .