On the effect of tip vortices in low-Reynolds-number post-stall flow control ∗

We numerically investigate the application of steady blowing to three-dimensional stalled flows around low-aspect-ratio rectangular flat-plate wings at a Reynolds number of 300. The objective of this study is to explore techniques to enhance lift by directly modifying the dynamics of the wake vortices. Out of various combinations of forcing location and direction considered, we identify two configurations that provide significant lift enhancement. In these cases, actuation appears to strengthen the tip vortices for increased downward induced velocity upon the leading-edge vortices. This in turn moves the low-pressure core directly above the top surface of the wing to greatly enhance lift.

[1]  Clarence W. Rowley,et al.  Unsteadiness in Flow over a Flat Plate at Angle-of-Attack at Low Reynolds Numbers , 2007 .

[2]  C. S. Lee,et al.  Flow structure and scaling laws in lateral wing-tip blowing , 1989 .

[3]  Z. J. Wang,et al.  The role of drag in insect hovering , 2004, Journal of Experimental Biology.

[4]  Chih-Ming Ho,et al.  Unsteady aerodynamics and flow control for flapping wing flyers , 2003 .

[5]  Thomas J. Mueller,et al.  Low-aspect-ratio wing aerodynamics at low Reynolds numbers , 2004 .

[6]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[7]  Thomas J. Mueller,et al.  Low Reynolds Number Aerodynamics of Low-Aspect-Ratio, Thin/Flat/Cambered-Plate Wings , 2000 .

[8]  Wei Shyy,et al.  Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring , 2008 .

[9]  M. Dickinson,et al.  The effect of advance ratio on the aerodynamics of revolving wings , 2004, Journal of Experimental Biology.

[10]  J Muelle,et al.  AERODYNAMICS OF SMALL VEHICLES , 2004 .

[11]  I. Wygnanski,et al.  Delay of Airfoil Stall by Periodic Excitation , 1996 .

[12]  Gilead Tadmor,et al.  Closed-Loop Control of Vortex Shedding on a Two-Dimensional Flat-Plate Airfoil at a Low Reynolds Number ∗ , 2008 .

[13]  K. Taira The immersed boundary projection method and its application to simulation and control of flows around low-aspect-ratio wings , 2008 .

[14]  Matthew T. Keennon,et al.  Development of the Black Widow Micro Air Vehicle , 2001 .

[15]  M. Gharib,et al.  A universal time scale for vortex ring formation , 1998, Journal of Fluid Mechanics.

[16]  Clarence W. Rowley,et al.  Low-Dimensional Models for Feedback Stabilization of Unstable Steady States , 2008 .

[17]  Morteza Gharib,et al.  On the relationship between the vortex formation process and cylinder wake vortex patterns , 2004, Journal of Fluid Mechanics.

[18]  Miguel R. Visbal,et al.  Unsteady aerodynamics of nonslender delta wings , 2005 .

[19]  M. Gharib,et al.  Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates , 2007, Journal of Fluid Mechanics.

[20]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[21]  M. Braza,et al.  Successive stages and the role of natural vortex dislocations in three-dimensional wake transition , 2001, Journal of Fluid Mechanics.

[22]  A. Holloway,et al.  Development of a Trailing Vortex Formed with Spanwise Tip Jets , 2007 .

[23]  L. Carr Progress in analysis and prediction of dynamic stall , 1988 .

[24]  Haecheon Choi,et al.  CONTROL OF FLOW OVER A BLUFF BODY , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[25]  Julio Soria,et al.  Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number , 2007, Journal of Fluid Mechanics.

[26]  J. Barlow,et al.  Flowfield Model for a Rectangular Planform Wing beyond Stall , 1980 .

[27]  J. Usherwood,et al.  The aerodynamics of revolving wings I. Model hawkmoth wings. , 2002, The Journal of experimental biology.

[28]  Lauder,et al.  Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. , 1999, The Journal of experimental biology.

[29]  Z. J. Wang Two dimensional mechanism for insect hovering , 2000 .

[30]  Joseph Katz,et al.  Study of the Unsteady Flow Features on a Stalled Wing , 1998 .

[31]  Thomas J. Mueller,et al.  Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications , 2001 .

[32]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[33]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[34]  T. Mueller,et al.  AERODYNAMICS OF SMALL VEHICLES , 2003 .

[35]  A. Smits,et al.  On the evolution of the wake structure produced by a low-aspect-ratio pitching panel , 2005, Journal of Fluid Mechanics.

[36]  Mao Sun,et al.  Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number , 2000 .

[37]  T. Colonius,et al.  Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers , 2009, Journal of Fluid Mechanics.

[38]  Michael S. Triantafyllou,et al.  Three-dimensional flow structures and vorticity control in fish-like swimming , 2002, Journal of Fluid Mechanics.

[39]  Mao Sun,et al.  High-lift generation and power requirements of insect flight , 2005 .

[40]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[41]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[42]  Jan Vierendeels,et al.  Numerical Investigation of Low-Aspect-Ratio Wings at Low Reynolds Numbers , 2005 .

[43]  Shigeru Sunada,et al.  Comparison of wing characteristics at an ultralow Reynolds number , 2002 .

[44]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[45]  M. Dickinson,et al.  Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing , 2006 .

[46]  Fathi Finaish,et al.  Further Visualization of Combined Wing Tip and Starting Vortex Systems , 1987 .

[47]  James F. Campbell Augmentation of Vortex Lift by Spanwise Blowing , 1975 .

[48]  Darryll J. Pines,et al.  Design, Analysis and Hover Performance of a Rotary Wing Micro Air Vehicle , 2003 .

[49]  James D. Baeder,et al.  Numerical Simulation of the Effects of Spanwise Blowing on Wing-tip Vortex Formation and Evolution , 2005 .

[50]  Israel J Wygnanski,et al.  Dynamic Stall Control by Intermittent Periodic Excitation , 2001 .

[51]  Robert J. Englar,et al.  Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification; Pa , 2000 .

[52]  Z. J. Wang,et al.  Unsteady forces on an accelerating plate and application to hovering insect flight , 2004, Journal of Fluid Mechanics.

[53]  W. H. Melbourne,et al.  Atmospheric winds and their implications for microair vehicles , 2006 .

[54]  M. Dickinson,et al.  Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers , 2004, Journal of Experimental Biology.

[55]  Philippe R. Spalart,et al.  AIRPLANE TRAILING VORTICES , 1998 .

[56]  Clarence W. Rowley,et al.  Low-Dimensional Models for Control of Leading-Edge Vortices: Equilibria and Linearized Models , 2007 .

[57]  K. Kawachi,et al.  A Numerical Study of Insect Flight , 1998 .

[58]  R. Mittal,et al.  Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils , 2006, Journal of Fluid Mechanics.

[59]  Michele Milano,et al.  Uncovering the physics of flapping flat plates with artificial evolution , 2005, Journal of Fluid Mechanics.

[60]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[61]  Tang Jian,et al.  Numerical and experimental study of flow structure of low-aspect-ratio wing , 2004 .

[62]  J. Soria,et al.  Flow structures behind a heaving and pitching finite-span wing , 2003, Journal of Fluid Mechanics.

[63]  F. Bos,et al.  Influence of wing kinematics on aerodynamic performance in hovering insect flight , 2007, Journal of Fluid Mechanics.

[64]  I. Wygnanski,et al.  Active separation control: an overview of Reynolds and Mach numbers effects , 2004 .

[65]  Z. J. Wang Vortex shedding and frequency selection in flapping flight , 2000, Journal of Fluid Mechanics.

[66]  John David Anderson,et al.  Aircraft performance and design , 1998 .

[67]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .