Superior properties of LaFe11.8Si1.2/La65Co35 magnetocaloric composites processed by spark plasma sintering

[1]  R. Ramanujan,et al.  High density La-Fe-Si based magnetocaloric composites with excellent properties produced by spark plasma sintering , 2022, Materials Science and Engineering: B.

[2]  R. Ramanujan,et al.  Attractive Properties of Magnetocaloric Spark Plasma Sintered LaFe11.6Si1.4/Pr2Co7 Composites for Near Room Temperature Cooling Applications , 2022, Journal of Alloys and Compounds.

[3]  R. Ramanujan,et al.  Phase constitution, microstructure evolution and magnetocaloric properties of LaFe11.8Si1.2 strip-casting flakes , 2021, Intermetallics.

[4]  R. Ramanujan,et al.  LaFe11.6Si1.4/Pr40Co60 magnetocaloric composites for refrigeration near room temperature , 2021 .

[5]  L. Bessais,et al.  Tuning the Magnetocaloric Properties of the La(Fe,Si)13 Compounds by Chemical Substitution and Light Element Insertion , 2021, Magnetochemistry.

[6]  R. Ramanujan,et al.  Improvement in mechanical and magnetocaloric properties of hot-pressed La(Fe,Si)13/La70Co30 composites by grain boundary engineering , 2021 .

[7]  R. Ramanujan,et al.  Microstructural evolution, magnetocaloric effect, mechanical and thermal properties of hot-pressed LaFe11.6Si1.4/Ce2Co7 composites prepared using strip-cast master alloy flakes , 2020 .

[8]  Jian Liu,et al.  Impact of interface structure on functionality in hot-pressed La-Fe-Si/Fe magnetocaloric composites , 2020 .

[9]  Y. Ouyang,et al.  LaFe11Co0.8Si1.2/Al magnetocaloric composites prepared by hot pressing , 2020 .

[10]  R. Ramanujan,et al.  Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion , 2020, Journal of Materials Science.

[11]  R. Ramanujan,et al.  Improvement in the magnetocaloric properties of sintered La(Fe,Si)13 based composites processed by La-Co grain boundary diffusion , 2019, Journal of Alloys and Compounds.

[12]  R. Ramanujan,et al.  A bimodal particle size distribution enhances mechanical and magnetocaloric properties of low-temperature hot pressed Sn-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 bulk composites , 2019, Journal of Magnetism and Magnetic Materials.

[13]  X. L. Feng,et al.  Influence of particle size on the mechanical properties and magnetocaloric effect of La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn composites , 2018, Journal of Magnetism and Magnetic Materials.

[14]  R. Ramanujan,et al.  Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing , 2018, MRS Communications.

[15]  N. Sun,et al.  Study of the Microstructure, Mechanical, and Magnetic Properties of LaFe11.6Si1.4Hy/Bi Magnetocaloric Composites , 2018, Materials.

[16]  Jian Liu,et al.  Outstanding Comprehensive Performance of La(Fe, Si)13Hy/In Composite with Durable Service Life for Magnetic Refrigeration , 2018 .

[17]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[18]  R. Ramanujan,et al.  La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing , 2018 .

[19]  J. Luo,et al.  Microstructure and improved magnetocaloric properties: LaFeSi/LaAl magnets prepared by spark plasma sintering technique , 2018 .

[20]  O. Gutfleisch,et al.  Production and properties of metal-bonded La(Fe,Mn,Si)13Hx composite material , 2017 .

[21]  C. Wong,et al.  Compressive strength of porous 3D printed spodumene , 2017 .

[22]  A. Yan,et al.  LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing , 2016 .

[23]  R. M’nassri Enhancement of Refrigeration Capacity and Table-Like Magnetocaloric Effect in LaFe 10.7Co 0.8Si 1.5/ La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5 Composite , 2016 .

[24]  J. Liu,et al.  LaFe11.6 Si1.4/Cu Magnetocaloric Composites Prepared by Hot Pressing , 2015, IEEE Transactions on Magnetics.

[25]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[26]  Liu Jian Optimizing and fabricating magnetocaloric materials , 2014 .

[27]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .

[28]  H. Sepehri-Amin,et al.  The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13 , 2012 .

[29]  R. Kainuma,et al.  Phase equilibria in the Fe–La–Si ternary system , 2012 .

[30]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[31]  M. Morris,et al.  The Rapid Formation of La(OH)3 from La2O3 Powders on Exposureto Water Vapor , 2010 .

[32]  L. Cohen,et al.  Reducing extrinsic hysteresis in first-order la (Fe,Co,Si)13 magnetocaloric systems , 2009 .

[33]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[34]  O. Gutfleisch,et al.  Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .

[35]  O. Gutfleisch,et al.  Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons , 2005 .

[36]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[37]  B. Shen,et al.  Magnetic entropy change and its temperature variation in compounds La(Fe1−xCox)11.2Si1.8 , 2002 .

[38]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[39]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[40]  F. Hu,et al.  Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy , 2000 .

[41]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[42]  K. Buschow,et al.  Phase relations and intermetallic compounds in the lanthanum-cobalt system , 1967 .