Sparse Image Reconstruction on the Sphere: Analysis and Synthesis

We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the $\ell _{1}$ norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.

[1]  Jean-Luc Starck,et al.  Wavelets, ridgelets and curvelets on the sphere , 2006 .

[2]  Boris Rubin Continuous Wavelet Transforms on a Sphere , 1998 .

[3]  Pierre Vandergheynst,et al.  On the computation of directional scale-discretized wavelet transforms on the sphere , 2013, Optics & Photonics - Optical Engineering + Applications.

[4]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[5]  Mark D. Plumbley,et al.  Choosing analysis or synthesis recovery for sparse reconstruction , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[6]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[7]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.

[8]  Pierre Vandergheynst,et al.  S2LET: A code to perform fast wavelet analysis on the sphere , 2012, ArXiv.

[9]  Yves Wiaux,et al.  Localisation of directional scale-discretised wavelets on the sphere , 2015, ArXiv.

[10]  G. W. Pratt,et al.  Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust , 2014, 1409.6728.

[11]  E.J. Candes Compressive Sampling , 2022 .

[12]  Jason D. McEwen,et al.  Ieee Transactions on Signal Processing 1 Exact Wavelets on the Ball , 2022 .

[13]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[14]  J. D. McEwen,et al.  Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio‐interferometric imaging , 2012, 1205.3123.

[15]  J.-L. Starck,et al.  Sparse component separation for accurate cosmic microwave background estimation , 2012, 1206.1773.

[16]  Belgium,et al.  Correspondence principle between spherical and euclidean wavelets , 2005, astro-ph/0502486.

[17]  B. Wandelt,et al.  Sparse inpainting and isotropy , 2013, 1308.0602.

[18]  Rodney A. Kennedy,et al.  An Optimal-Dimensionality Sampling Scheme on the Sphere With Fast Spherical Harmonic Transforms , 2014, IEEE Transactions on Signal Processing.

[19]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[20]  Willi Freeden,et al.  Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .

[21]  C. A. Oxborrow,et al.  Planck 2013 results. I. Overview of products and scientific results , 2013, 1502.01582.

[22]  Yves Wiaux,et al.  Directional spin wavelets on the sphere , 2015, ArXiv.

[23]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[24]  C. A. Oxborrow,et al.  Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations , 2014, 1409.2495.

[25]  Jason D. McEwen,et al.  Second-Generation Curvelets on the Sphere , 2015, IEEE Transactions on Signal Processing.

[26]  Pina Marziliano,et al.  Sampling Signals With a Finite Rate of Innovation on the Sphere , 2013, IEEE Transactions on Signal Processing.

[27]  Daniel Potts,et al.  Interpolatory Wavelets on the Sphere , 1995 .

[28]  O. V. Verkhodanov,et al.  Gauss - Legendre sky pixelization (GLESP) for CMB maps , 2005 .

[29]  Jean-Philippe Thiran,et al.  Sparsity Averaging for Compressive Imaging , 2012, IEEE Signal Processing Letters.

[30]  J.-L. Starck,et al.  Spherical 3D isotropic wavelets , 2012 .

[31]  A. M. M. Scaife,et al.  Simulating full‐sky interferometric observations , 2008, 0803.2165.

[32]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[33]  Salman Durrani,et al.  Gauss-Legendre Sampling on the Rotation Group , 2015, IEEE Signal Processing Letters.

[34]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[35]  P. Vandergheynst,et al.  Wavelets on the 2-sphere: A group-theoretical approach , 1999 .

[36]  Jason D. McEwen,et al.  Ridgelet transform on the sphere , 2015, ArXiv.

[37]  O. Blanc,et al.  Exact reconstruction with directional wavelets on the sphere , 2007, 0712.3519.

[38]  Isaac Z. Pesenson,et al.  Simple proposal for radial 3D needlets , 2014, 1408.1095.

[39]  P. P. Vaidyanathan,et al.  The Lifting Scheme: A Construction Of Second Generation Wavelets , 1995 .

[40]  Yue M. Lu,et al.  Sampling Sparse Signals on the Sphere: Algorithms and Applications , 2015, IEEE Transactions on Signal Processing.

[41]  H. Peiris,et al.  Spin-SILC: CMB polarization component separation with spin wavelets , 2016, 1605.01417.

[42]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[43]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[44]  Jason D. McEwen,et al.  3D weak lensing with spin wavelets on the ball , 2015, ArXiv.

[45]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[46]  Jason D. McEwen,et al.  Fourier-Laguerre transform, convolution and wavelets on the ball , 2013, ArXiv.

[47]  F. J. Narcowich,et al.  Nonstationary Wavelets on them-Sphere for Scattered Data , 1996 .

[48]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[49]  H. Peiris,et al.  SILC: a new Planck internal linear combination CMB temperature map using directional wavelets , 2016, 1601.01322.

[50]  Michael P. Hobson,et al.  A directional continuous wavelet transform on the sphere , 2006, ArXiv.

[51]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[52]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[53]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[54]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[55]  Jean-Philippe Thiran,et al.  Sparse Image Reconstruction on the Sphere: Implications of a New Sampling Theorem , 2012, IEEE Transactions on Image Processing.

[56]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[57]  Marcos López-Caniego,et al.  Wavelets on the sphere. Application to the detection problem , 2006, 2006 14th European Signal Processing Conference.

[58]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[59]  Jean-Luc Starck,et al.  Morphological Component Analysis and Inpainting on the Sphere: Application in Physics and Astrophysics , 2007 .

[60]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[61]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[62]  Bruno Torrésani,et al.  Position-frequency analyis for signals defined on spheres , 1995, Signal Process..

[63]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[64]  Pierre Vandergheynst,et al.  Wavelets on the n-sphere and related manifolds , 1998 .

[65]  Rodney A. Kennedy,et al.  Accurate Reconstruction of Finite Rate of Innovation Signals on the Sphere , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[66]  Anthony N. Lasenby,et al.  Testing the Gaussianity of the COBE DMR data with spherical wavelets , 2000 .

[67]  Laurent Jacques,et al.  Stereographic wavelet frames on the sphere , 2005 .

[68]  J. D. McEwen,et al.  Data compression on the sphere , 2011, 1108.3900.

[69]  Robert G. Crittenden,et al.  Exactly azimuthal pixelizations of the sky , 1998 .

[70]  Alexander M. Bronstein,et al.  Consistent Discretization and Minimization of the L1 Norm on Manifolds , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[71]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Rotation Group , 2015, IEEE Signal Processing Letters.