Two-dimensional boron monolayer sheets.

Boron, a nearest-neighbor of carbon, is possibly the second element that can possess free-standing flat monolayer structures, evidenced by recent successful synthesis of single-walled and multiwalled boron nanotubes (MWBNTs). From an extensive structural search using the first-principles particle-swarm optimization (PSO) global algorithm, two boron monolayers (α(1)- and β(1)-sheet) are predicted to be the most stable α- and β-types of boron sheets, respectively. Both boron sheets possess greater cohesive energies than the state-of-the-art two-dimensional boron structures (by more than 60 meV/atom based on density functional theory calculation using PBE0 hybrid functional), that is, the α-sheet previously predicted by Tang and Ismail-Beigi and the g(1/8)- and g(2/15)-sheets (both belonging to the β-type) recently reported by Yakobson and co-workers. Moreover, the PBE0 calculation predicts that the α-sheet is a semiconductor, while the α(1)-, β(1)-, g(1/8)-, and g(2/15)-sheets are all metals. When two α(1) monolayers are stacked on top each other, the bilayer α(1)-sheet remains flat with an optimal interlayer distance of ~3.62 Å, which is close to the measured interlayer distance (~3.2 Å) in MWBNTs.

[1]  S. Bhowmick,et al.  Polymorphism of two-dimensional boron. , 2012, Nano letters.

[2]  L. Bañares,et al.  A femtosecond velocity map imaging study on B-band predissociation in CH3I. II. The 2(0)1 and 3(0)1 vibronic levels. , 2012, The Journal of chemical physics.

[3]  Jijun Zhao,et al.  B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals. , 2012, The Journal of chemical physics.

[4]  Yanchao Wang,et al.  Spiral chain O4 form of dense oxygen , 2011, Proceedings of the National Academy of Sciences.

[5]  Hui Wang,et al.  High pressure partially ionic phase of water ice. , 2011, Nature communications.

[6]  Yanchao Wang,et al.  Predicting two-dimensional boron-carbon compounds by the global optimization method. , 2011, Journal of the American Chemical Society.

[7]  I. Boustani Towards novel boron nanostructural materials , 2011 .

[8]  Hui Bai,et al.  Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. , 2011, Physical chemistry chemical physics : PCCP.

[9]  Thomas Frauenheim,et al.  Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities. , 2011, ACS nano.

[10]  Hideki Tanaka,et al.  Graphene-like bilayer hexagonal silicon polymorph , 2010 .

[11]  S. Ismail-Beigi,et al.  First-principles study of boron sheets and nanotubes , 2010 .

[12]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[13]  Jijun Zhao,et al.  B(80) and other medium-sized boron clusters: core-shell structures, not hollow cages. , 2010, The journal of physical chemistry. A.

[14]  Jinlong Yang,et al.  Icosahedral B12-containing core-shell structures of B80. , 2010, Chemical communications.

[15]  Jun Chen,et al.  Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties , 2010 .

[16]  Alexander I Boldyrev,et al.  A concentric planar doubly π-aromatic B₁₉⁻ cluster. , 2010, Nature chemistry.

[17]  R. Pandey,et al.  The Unusually Stable B100 Fullerene, Structural Transitions in Boron Nanostructures, and a Comparative Study of α- and γ-Boron and Sheets , 2010 .

[18]  Shengbai Zhang,et al.  Endohedral metalloborofullerenes La2@B80 and Sc3N@B80: a density functional theory prediction. , 2009, The journal of physical chemistry. A.

[19]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[21]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[22]  Xiaojun Wu,et al.  B2C graphene, nanotubes, and nanoribbons. , 2009, Nano letters.

[23]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[24]  B. Yakobson,et al.  The boron buckyball and its precursors: an electronic structure study. , 2008, The journal of physical chemistry. A.

[25]  G. Su,et al.  Family of boron fullerenes: general constructing schemes, electron counting rule and ab initio calculations , 2008, 0811.1523.

[26]  Jun Yu Li,et al.  Low-lying isomers of the B9(-) boron cluster: the planar molecular wheel versus three-dimensional structures. , 2008, The Journal of chemical physics.

[27]  B. Yakobson,et al.  Erratum: B 80 Fullerene: An Ab Initio Prediction of Geometry, Stability, and Electronic Structure [Phys. Rev. Lett. 98 , 166804 (2007)] , 2008 .

[28]  B. Yakobson,et al.  Probing properties of boron alpha-tubes by Ab Initio calculations. , 2008, Nano letters.

[29]  Weitao Yang,et al.  Localization and delocalization errors in density functional theory and implications for band-gap prediction. , 2007, Physical review letters.

[30]  Probing Properties of Boron r-Tubes by Ab Initio Calculations , 2008 .

[31]  M. Kappes,et al.  Boron cluster cations: transition from planar to cylindrical structures. , 2007, Angewandte Chemie.

[32]  N. G. Szwacki Boron Fullerenes: A First-Principles Study , 2007, 0711.0767.

[33]  Johanna L. Miller New sheet structures may be the basis for boron nanotubes , 2007 .

[34]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[35]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[36]  B. Yakobson,et al.  B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure. , 2007, Physical review letters.

[37]  Ravindra Pandey,et al.  Stability and Electronic Properties of Atomistically-Engineered 2D Boron Sheets , 2007 .

[38]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[39]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[40]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[41]  Wei An,et al.  Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-. , 2006, The Journal of chemical physics.

[42]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[43]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[44]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[45]  S. Bulusu,et al.  Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jinlan Wang,et al.  Endohedral Silicon Fullerenes SiN (27 ≤ N ≤ 39) , 2004 .

[47]  O. A. Utas,et al.  Ordered Arrays of Be-Encapsulated Si Nanotubes on Si(111) Surface , 2004 .

[48]  Koblar A. Jackson,et al.  Unraveling the Shape Transformation in Silicon Clusters , 2004 .

[49]  Yimei Zhu,et al.  Synthesis of Pure Boron Single-Wall Nanotubes. , 2004 .

[50]  X. Zeng,et al.  Metallic single-walled silicon nanotubes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[52]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[53]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[54]  Y. Kawazoe,et al.  Stabilization of Si60 cage structure. , 2003, Physical review letters.

[55]  Jacek A. Majewski,et al.  Exact exchange Kohn-Sham formalism applied to semiconductors , 1999 .

[56]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[57]  A. Quandt,et al.  Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .

[58]  I. Boustani,et al.  Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures of B n (n=2–14) , 1997 .

[59]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[60]  I. Boustani,et al.  New quasi-planar surfaces of bare boron , 1997 .

[61]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[65]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[66]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[67]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[68]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[69]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[70]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[71]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[72]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[74]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[75]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[76]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .