Electrical properties of Ni/n-GaN Schottky diodes on freestanding m-plane GaN substrates

The electrical properties of m-plane Ni/n-GaN Schottky diodes grown via metalorganic chemical vapor deposition were investigated. Under growth at 1,120 °C with a V/III ratio of 1,000 (growth rate of 100 nm/min), the residual Si, O, and C impurity concentrations in the m-plane GaN layer were below the secondary-ion mass spectroscopy detection limit. The surface of the Si-doped n-GaN epitaxial layer on the 5°-off m-plane GaN substrate consisted of steps and terraces. A linear correlation between the carrier concentration and the Si atomic concentration was clearly observed from 1 × 1017 to 5 × 1015 cm−3. The reverse current–voltage curves were fitted using the thermionic field-emission model at the measured carrier concentration and qB. The leakage current of the diodes under a reverse bias was effectively suppressed at a low carrier concentration of 4.6 × 1015 cm−3.

[1]  T. Kimoto,et al.  Nearly Ideal Current–Voltage Characteristics of Schottky Barrier Diodes Formed on Hydride-Vapor-Phase-Epitaxy-Grown GaN Free-Standing Substrates , 2010 .

[2]  Tsukuru Katsuyama,et al.  Novel Vertical Heterojunction Field-Effect Transistors with Re-grown AlGaN/GaN Two-Dimensional Electron Gas Channels on GaN Substrates , 2010 .

[3]  F. Ren,et al.  Gallium Nitride Processing for Electronics, Sensors and Spintronics , 2006 .

[4]  Takashi Shinohe,et al.  Reverse Characteristics of a 4H-SiC Schottky Barrier Diode , 2002 .

[5]  Hugo Bender,et al.  AlGaN/GaN/AlGaN Double Heterostructures Grown on 200 mm Silicon (111) Substrates with High Electron Mobility , 2011 .

[6]  S. Denbaars,et al.  High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .

[7]  T. Mishima,et al.  Electrical characteristics of Au/Ni Schottky diodes on cleaved m-plane surfaces of free-standing n-GaN substrates , 2015 .

[8]  Tsutomu Ina,et al.  1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation , 2015 .

[9]  T. Mishima,et al.  Optical-Thermo-Transition Model of Reduction in On-Resistance of Small GaN p–n Diodes , 2013 .

[10]  T. Mishima,et al.  Roles of lightly doped carbon in the drift layers of vertical n-GaN Schottky diode structures on freestanding GaN substrates , 2015 .

[11]  Koji Katayama,et al.  Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates , 2010 .

[12]  Frank Brunner,et al.  AlGaN/GaN/GaN:C Back-Barrier HFETs With Breakdown Voltage of Over 1 kV and Low $R_{\scriptscriptstyle{\rm ON}} \times A$ , 2010, IEEE Transactions on Electron Devices.

[13]  Mathew C. Schmidt,et al.  High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes , 2007 .

[14]  M. Han,et al.  A new vertical GaN SBD employing in-situ metallic gallium ohmic contact , 2011, 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs.

[15]  D. Bour,et al.  Vertical Power p-n Diodes Based on Bulk GaN , 2015, IEEE Transactions on Electron Devices.

[16]  S. Denbaars,et al.  Impact of Substrate Miscut on the Characteristic of m-plane InGaN/GaN Light Emitting Diodes , 2007 .

[17]  T. Oka,et al.  50 A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V , 2015 .

[18]  K. Fujito,et al.  Bulk GaN crystals grown by HVPE , 2009 .

[19]  Enhancement-Mode m-plane AlGaN/GaN Heterojunction Field-Effect Transistors , 2009 .

[20]  T. Mishima,et al.  High-Breakdown-Voltage and Low-Specific-on-Resistance GaN p–n Junction Diodes on Free-Standing GaN Substrates Fabricated Through Low-Damage Field-Plate Process , 2013 .

[21]  B. J. Baliga,et al.  Planar Nearly Ideal Edge-Termination Technique for GaN Devices , 2011, IEEE Electron Device Letters.

[22]  H. Matsuo,et al.  8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation , 2007, 2007 IEEE International Electron Devices Meeting.