Different recovery strategies from maximal exercise seem to induce different lactate utilization patterns without significantly affecting performance on one subsequent maximal exercise. It remains unclear however, how varying recovery modalities affects repeated maximal exercise. To study this, we examined in 16 subjects, the influence of passive (P), active leg (L) and active arm (A) twenty minutes recovery periods separating a series of four exhaustive exercises, up to two minutes duration. Significant decreases in performance between the first and fourth exercise were observed in all recovery series but a significant decrease in performance in the second exercise was observed during passive recovery alone (p < 0.01). When the different types of recovery are compared, a more pronounced decrement in performance was found during passive recovery when first and last exercises are compared (p < 0.04). Pedaling duration in each successive exercise was unaffected in A or L but was significantly shorter in P (p < 0.03). Highly significant differences in mean blood lactate kinetics were found for the three recovery patterns used, with more elevated peak and nadir levels in passive recovery, intermediate values in active arm and lowest concentrations in active leg recovery. However, no correlation was found between performance and lactate concentration at the onset of exercise (r = -0.15; p = NS). Mean heart rates were similar throughout the experimental protocol except for a lower cardiac frequency during the last 5 minutes of passive recovery (p < 0.01). Blood hematocrits showed higher hemoconcentrations in repeated exercise during passive recovery (p < 0.01) despite significantly lower total fluid losses in this group. A significant correlation between peak hematocrit and blood lactate was also found (r = 0.67; p < 0.001). We conclude that the type of recovery has a significant effect on blood lactate elimination kinetics, and active recovery is beneficial in the preservation of performance during repeated maximal exercise. Furthermore, plasma shifts across the extra and intravascular spaces are induced by maximal exercise, and appear to closely follow blood lactate kinetics.