Nonlinear Oscillations and Multiscale Dynamics in a Closed Chemical Reaction System

We investigate the oscillatory chemical dynamics in a closed isothermal reaction system described by the reversible Lotka–Volterra model. This is a three-dimensional, dissipative, singular perturbation to the conservative Lotka–Volterra model, with the free energy serving as a global Lyapunov function. We will show that there is a natural distinction between oscillatory and non-oscillatory regions in the phase space, that is, while orbits ultimately reach the equilibrium in a non-oscillatory fashion, they exhibit damped, oscillatory behaviors as interesting transient dynamics.

[1]  Margaret H. Wright Institute of Mathematics and Its Applications , 1964, Nature.

[2]  Jack K. Hale,et al.  Dynamical systems and stability , 1969 .

[3]  Raymond M. Redheffer,et al.  The Theorems of Bony and Brezis on Flow-Invariant Sets , 1972 .

[4]  R. M. Noyes,et al.  Oscillatory Chemical Reactions , 1974 .

[5]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[6]  S. Hastings,et al.  The Existence of Oscillatory Solutions in the Field–Noyes Model for the Belousov–Zhabotinskii Reaction , 1975 .

[7]  Application of Hamilton-Jacobi theory to the Lotka-Volterra oscillator. , 1976, Bulletin of mathematical biology.

[8]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[9]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[10]  Ichiro Tsuda,et al.  Chaos in the Belousov-Zhabotinsky reaction in a flow system , 1979 .

[11]  Richard J. Field,et al.  Composite double oscillation in a modified version of the oregonator model of the Belousov–Zhabotinsky reaction , 1980 .

[12]  John J. Tyson On Scaling the Oregonator Equations , 1981 .

[13]  On the Abnormality of Period Doubling Bifurcations — In Connection with the Bifurcation Structure in the Belousov-Zhabotinsky Reaction System — , 1981 .

[14]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[15]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[16]  C. Vidal,et al.  Non-Equilibrium Dynamics in Chemical Systems , 1984 .

[17]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[18]  J. Keener,et al.  Spiral waves in the Belousov-Zhabotinskii reaction , 1986 .

[19]  Philip Holmes,et al.  Periodic orbits in slowly varying oscillators , 1987 .

[20]  J. Keener,et al.  The Motion of Untwisted Untorted Scroll Waves in Belousov-Zhabotinsky Reagent , 1988, Science.

[21]  James P. Keener,et al.  Dispersion of traveling waves in the Belousov-Zhabotinskii reaction , 1988 .

[22]  Kunimochi Sakamoto,et al.  Invariant manifolds in singular perturbation problems for ordinary differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  Ertl,et al.  Solitary-wave phenomena in an excitable surface reaction. , 1992, Physical review letters.

[24]  A Generalized Integral Manifold Theorem , 1993 .

[25]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[26]  PERIOD-DOUBLING GEOMETRY OF THE BELOUSOV-ZHABOTINSKY REACTION DYNAMICS , 1996 .

[27]  Daishin Ueyama,et al.  A skeleton structure of self-replicating dynamics , 1997 .

[28]  Irving R. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos , 1998 .

[29]  L. Reichl,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos By Irving R. Epstein (Brandeis University) and John A. Pojman (University of S. Mississippi). Oxford University Press: New York. 1998. 408 pp. $75.00. ISBN 0-19-509670-3. , 2000 .

[30]  Andreas W. Liehr,et al.  Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system , 2002 .

[31]  G. Gallavotti,et al.  Nonequilibrium thermodynamics , 2003, 1901.08821.

[32]  M. Qian,et al.  Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems , 2004 .

[33]  Minping Qian,et al.  Mathematical Theory of Nonequilibrium Steady States , 2004 .

[34]  Frank Jülicher,et al.  Oscillations in cell biology. , 2005, Current opinion in cell biology.

[35]  Hong Qian,et al.  Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. , 2006, The journal of physical chemistry. B.

[36]  Hong Qian,et al.  Phosphorylation energy hypothesis: open chemical systems and their biological functions. , 2007, Annual review of physical chemistry.

[37]  Anna L. Lin,et al.  Period doubling in a periodically forced Belousov-Zhabotinsky reaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Ying-Cheng Lai,et al.  Chaotic transients in spatially extended systems , 2008 .

[39]  Hong Qian,et al.  Oscillations and multiscale dynamics in a closed chemical reaction system: second law of thermodynamics and temporal complexity. , 2008, The Journal of chemical physics.

[40]  Carmen Chicone,et al.  Stability Theory of Ordinary Differential Equations , 2009, Encyclopedia of Complexity and Systems Science.