Prediction of Antifungal Peptides by Deep Learning with Character Embedding

[1]  N. Beeching,et al.  Multi-drug resistant typhoid: a global problem. , 1996, Journal of medical microbiology.

[2]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[3]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[4]  R. Tiwari,et al.  Fungal/mycotic diseases of poultry-diagnosis, treatment and control: a review. , 2013, Pakistan journal of biological sciences : PJBS.

[5]  Amarda Shehu,et al.  Deep learning improves antimicrobial peptide recognition , 2018, Bioinform..

[6]  Gianluca Pollastri,et al.  CPPpred: prediction of cell penetrating peptides , 2013, Bioinform..

[7]  Kumardeep Chaudhary,et al.  Cell Penetrating Peptides , 2016 .

[8]  O L Franco,et al.  Computational tools for exploring sequence databases as a resource for antimicrobial peptides. , 2017, Biotechnology advances.

[9]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[10]  K. Chou,et al.  iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. , 2013, Analytical biochemistry.

[11]  L. Pauling,et al.  Molecules as documents of evolutionary history. , 1965, Journal of theoretical biology.

[12]  Hassan Mohabatkar,et al.  An Evaluation on Different Machine Learning Algorithms for Classification and Prediction of Antifungal Peptides. , 2016, Medicinal chemistry (Shariqah (United Arab Emirates)).

[13]  Xiujun Gong,et al.  On the prediction of DNA-binding proteins only from primary sequences: A deep learning approach , 2017, PloS one.

[14]  M. Fisher,et al.  Tackling emerging fungal threats to animal health, food security and ecosystem resilience , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Gajendra P. S. Raghava,et al.  Analysis and prediction of antibacterial peptides , 2007, BMC Bioinformatics.

[16]  Gwang Lee,et al.  AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest , 2018, Front. Pharmacol..

[17]  Shreyas Karnik,et al.  ClassAMP: A Prediction Tool for Classification of Antimicrobial Peptides , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[18]  J. Alspaugh,et al.  New Horizons in Antifungal Therapy , 2016, Journal of fungi.

[19]  William F Porto,et al.  Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides. , 2017, Journal of theoretical biology.

[20]  Balachandran Manavalan,et al.  Machine-Learning-Based Prediction of Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy. , 2018, Journal of proteome research.

[21]  Gajendra P. S. Raghava,et al.  AntiBP2: improved version of antibacterial peptide prediction , 2010, BMC Bioinformatics.

[22]  Balachandran Manavalan,et al.  MLACP: machine-learning-based prediction of anticancer peptides , 2017, Oncotarget.

[23]  B. Gellin,et al.  Fungal infections: a growing threat. , 1996, Public health reports.

[24]  Nithin V. George,et al.  KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides. , 2018, Journal of proteome research.