Incremental computation of information landscapes for dynamic web interfaces

This paper presents a technique for the visual analysis of topical shifts in dynamically changing textual archives. Our approach is based on the well-known information landscape metaphor, whereby topical changes are represented by changes in landscape topography. Incremental clustering and multi-dimensional scaling algorithms are periodically applied to a changing document set for generating a series of information landscapes. The resulting landscapes are suitable for dynamic Web interfaces, enabling the user to explore topical relationships and understand topical shifts and trends in changing document repositories.

[1]  Heidrun Schumann,et al.  Visualizing time-oriented data - A systematic view , 2007, Comput. Graph..

[2]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[3]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[4]  Elizabeth Chang,et al.  Semi-Automatic Ontology Extension Using Spreading Activation , 2005 .

[5]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[6]  Arno Scharl,et al.  Multiple coordinated views for searching and navigating Web content repositories , 2009, Inf. Sci..

[7]  Michael Granitzer,et al.  Automatic Cluster Number Selection Using a Split and Merge K-Means Approach , 2009, 2009 20th International Workshop on Database and Expert Systems Application.

[8]  Jarek Nieplocha,et al.  Scalable Visual Analytics of Massive Textual Datasets , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[9]  Wolfgang Kienreich,et al.  The InfoSky visual explorer: Exploiting Hierarchical Structure and Document Similarities , 2002, Inf. Vis..

[10]  Thomas Goldstein Algorithms and Applications for L1 Minimization , 2010 .

[11]  Wolfgang Kienreich,et al.  Fused Exploration of Temporal Developments and Topical Relationships in Heterogeneous Data Sets , 2007, 2007 11th International Conference Information Visualization (IV '07).

[12]  Wolfgang Kienreich,et al.  Visual Knowledge Discovery in Dynamic Enterprise Text Repositories , 2009, 2009 13th International Conference Information Visualisation.

[13]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[14]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[15]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[16]  Mikhail Bautin,et al.  Significant Phrases Detection , 2006 .