Recent Advances in Telecommunications Avalanche Photodiodes

For high-bit-rate long-haul fiber optic communications, the avalanche photodiode (APD) is frequently the photodetector of choice owing to its internal gain, which provides a sensitivity margin relative to PIN photodiodes. APDs can achieve 5-10-dB better sensitivity than PINs, provided that the multiplication noise is low and the gain-bandwidth product is sufficiently high. In the past decade, the performance of APDs for optical fiber communication systems has improved as a result of improvements in materials and the development of advanced device structures. This paper presents a brief review of APD fundamentals and describes some of the significant advances

[1]  A. Tosi,et al.  InGaAs/InP Single Photon Avalanche Diode Design and Characterization , 2006, European Solid-State Device Research Conference.

[2]  Hong-Wei Lee,et al.  High gain effects for solid-state impact-ionization multipliers , 2006, IEEE Journal of Quantum Electronics.

[3]  E. Ishimura,et al.  Investigation of guardring-free planar AlInAs avalanche photodiodes , 2006, IEEE Photonics Technology Letters.

[4]  J. Campbell,et al.  Low Dark Count Rate and High Single Photon Detection Efficiency Avalanche Photodiode in Geiger-mode Operation , 2006, 2006 64th Device Research Conference.

[5]  Jeffrey D. Beck,et al.  The HgCdTe electron avalanche photodiode , 2004, 2006 Digest of the LEOS Summer Topical Meetings.

[6]  Ping Yuan,et al.  Characterization of InGaAsP/InP APD arrays for SWIR imaging applications , 2006, SPIE Defense + Commercial Sensing.

[7]  E. Ishimura,et al.  Simple planar structure for high-performance AlInAs avalanche photodiodes , 2006, IEEE Photonics Technology Letters.

[8]  A. Hawkins,et al.  Surface structure silicon based impact-ionization multiplier for optical detection. , 2005, Optics express.

[9]  A. Hawkins,et al.  Solid-state current amplifier based on impact ionization , 2005 .

[10]  J.C. Campbell,et al.  High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region , 2005, IEEE Photonics Technology Letters.

[11]  T. Nakata,et al.  40-Gbps waveguide avalanche photodiodes , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[12]  R. C. Tozer,et al.  Avalanche noise characteristics of single Al/sub x/Ga/sub 1-x/As(0.3 , 2005, IEEE Journal of Quantum Electronics.

[13]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[14]  S. Wang,et al.  Quasi-direct UV/blue GaP avalanche photodetectors , 2004, IEEE Journal of Quantum Electronics.

[15]  J. Campbell,et al.  Recent advances in avalanche photodiodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Alexandre Pauchard,et al.  InGaAs-on-Si photodetectors for high-sensitivity detection , 2004, SPIE Defense + Commercial Sensing.

[17]  Franco Zappa,et al.  Evolution and prospects for single-photon avalanche diodes and quenching circuits , 2004 .

[18]  N. Tscherptner,et al.  High-responsivity and high-speed evanescently-coupled avalanche photodiodes , 2003 .

[19]  J. C. Dries,et al.  Variations in the photon-counting performance of InGaAs/InP avalanche photodiodes , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[20]  Bahaa E. A. Saleh,et al.  Optimal excess noise reduction in thin heterojunction Al/sub 0.6/Ga/sub 0.4/As-GaAs avalanche photodiodes , 2003 .

[21]  Andreas Umbach High-speed integrated photodetectors for 40-Gbit/s applications , 2003, SPIE ITCom.

[22]  R. C. Tozer,et al.  Nonlocal effects in thin 4H-SiC UV avalanche photodiodes , 2003 .

[23]  M. Hopkinson,et al.  The effect of dead space on gain and excess noise in In0.48Ga0.52P p+in+ diodes , 2003 .

[24]  Jeffrey D. Beck,et al.  Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise , 2003 .

[25]  A. Holmes,et al.  InGaAs/InAlAs avalanche photodiode with undepleted absorber , 2003 .

[26]  Joe C. Campbell,et al.  Ultra-low noise avalanche photodiodes with a "centered-well" multiplication region , 2003 .

[27]  J.C. Campbell,et al.  Low-noise impact-ionization-engineered avalanche photodiodes grown on InP substrates , 2002, IEEE Photonics Technology Letters.

[28]  S. Forrest,et al.  A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode , 2002, IEEE Photonics Technology Letters.

[29]  P. Mages,et al.  Fused InGaAs-Si avalanche photodiodes with low-noise performances , 2002, IEEE Photonics Technology Letters.

[30]  P. Pagnod-Rossiaux,et al.  Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications-compared performance with side-illuminated photodiodes , 2002 .

[31]  R. C. Tozer,et al.  Avalanche multiplication and breakdown in AlxGa1-xAs (x < 0-9) , 2002 .

[32]  R. C. Tozer,et al.  Avalanche multiplication and breakdown in Al/sub x/Ga/sub 1-x/As (x < 0.9) , 2002 .

[33]  Bahaa E. A. Saleh,et al.  Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes: theory and experiment [Al/sub 0.6/Ga/sub 0.4/As/GaAs] , 2002 .

[34]  D. Shaver,et al.  InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm , 2002 .

[35]  J. Campbell,et al.  Calculation of gain and noise with dead space for GaAs and Al/sub x/Ga/sub 1-x/As avalanche photodiode , 2002 .

[36]  J. C. Dries,et al.  Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes , 2002, IEEE Photonics Technology Letters.

[37]  Kunihiro Sato,et al.  Reconfigurable free-space all-optical interconnection with beam-fanning switch in photorefractive crystal , 2002 .

[38]  R. C. Tozer,et al.  Excess Noise Characteristics of Al Ga As Avalanche Photodiodes , 2002 .

[39]  J. Campbell,et al.  Calculation of Gain and Noise With Dead Space for GaAs and Al Ga As Avalanche Photodiode , 2002 .

[40]  T. Torikai,et al.  High-sensitivity 40-Gb/s receiver with a wideband InAIAs waveguide avalanche photodiode , 2002, 2002 28TH European Conference on Optical Communication.

[41]  X. Li,et al.  Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region , 2001, IEEE Photonics Technology Letters.

[42]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[43]  Jeffrey D. Beck,et al.  MWIR HgCdTe avalanche photodiodes , 2001, SPIE Optics + Photonics.

[44]  R. C. Tozer,et al.  Avalanche multiplication characteristics of Al/sub 0.8/Ga/sub 0.2/As diodes , 2001 .

[45]  P. Studenkov,et al.  An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler , 2001, IEEE Photonics Technology Letters.

[46]  J.C. Campbell,et al.  Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.

[47]  J. David,et al.  Fokker–Planck model for nonlocal impact ionization in semiconductors , 2001 .

[48]  R. C. Tozer,et al.  Low multiplication noise thin Al/sub 0.6/Ga/sub 0.4/As avalanche photodiodes , 2001 .

[49]  Chee Hing Tan,et al.  Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes , 2001 .

[50]  Joe C. Campbell,et al.  Multiplication noise of AlxGa1−xAs avalanche photodiodes with high Al concentration and thin multiplication region , 2001 .

[51]  Majeed M. Hayat,et al.  Optimal excess noise reduction in thin heterojunction Al0.6Ga0.4As-GaAs avalanche photodiodes , 2001 .

[52]  R. C. Tozer,et al.  Impact ionization coefficients of Al0.8Ga0.2As , 2000 .

[53]  Toshitaka Torikai,et al.  10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure , 2000 .

[54]  J.C. Campbell,et al.  Temperature dependence of the ionization coefficients of Al/sub x/Ga/sub 1-x/As , 2000, IEEE Journal of Quantum Electronics.

[55]  J.C. Campbell,et al.  Avalanche photodiodes with an impact-ionization-engineered multiplication region , 2000, IEEE Photonics Technology Letters.

[56]  Joe C. Campbell,et al.  GaNAs resonant-cavity avalanche photodiode operating at 1.064 μm , 2000 .

[57]  Chee Hing Tan,et al.  Avalanche noise measurement in thin Si p+-i-n+ diodes , 2000 .

[58]  K. Makita,et al.  High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide , 2000 .

[59]  J. David,et al.  Avalanche multiplication in AlxGa1-xAs (x=0to0.60) , 2000 .

[60]  J. David,et al.  Avalanche multiplication in Al/sub x/Ga/sub 1-x/As (x=0 to 0.60) , 2000 .

[61]  John P. R. David,et al.  Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs] , 2000 .

[62]  S.D. Lee,et al.  Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar InGaAs-InP avalanche photodiode , 2000, IEEE Photonics Technology Letters.

[63]  Chee Hing Tan,et al.  Avalanche multiplication and noise in submicron Si p-i-n diodes , 2000, Photonics West - Optoelectronic Materials and Devices.

[64]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[65]  Mark A. Itzler,et al.  Manufacturable planar bulk-InP avalanche photodiodes for 10 Gb/s applications , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).

[66]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[67]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[68]  J. David,et al.  A simple model for avalanche multiplication including deadspace effects , 1999 .

[69]  R. C. Tozer,et al.  Low avalanche noise characteristics in thin InP p/sup +/-i-n/sup +/ diodes with electron initiated multiplication , 1999, IEEE Photonics Technology Letters.

[70]  R. M. Ash,et al.  Buried-mesa avalanche photodiodes , 1998 .

[71]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[72]  Mark A. Itzler,et al.  Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[73]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[74]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .

[75]  T. Nakata,et al.  High-reliability and low-dark-current 10-Gb/s planar superlattice avalanche photodiodes , 1997, IEEE Photonics Technology Letters.

[76]  J. P. Praseuth,et al.  Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz , 1997 .

[77]  J. David,et al.  Impact ionization in thin AlxGa1−xAs (x=0.15 and 0.30) p-i-n diodes , 1997 .

[78]  J. David,et al.  Monte Carlo simulation of impact ionization and current multiplication in short GaAs diodes , 1997 .

[79]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[80]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[81]  John P. R. David,et al.  Investigation of impact ionization in thin GaAs diodes , 1996 .

[82]  John E. Bowers,et al.  Silicon heterointerface photodetector , 1996 .

[83]  K. Makita,et al.  A new planar-structure InAlGaAs-InAlAs superlattice avalanche photodiode with a Ti-implanted guard-ring , 1996, IEEE Photonics Technology Letters.

[84]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[85]  D. G. Knight,et al.  Planar InP-InGaAs single-growth avalanche photodiodes with no guard rings , 1995, IEEE Photonics Technology Letters.

[86]  Yong-hee Lee,et al.  High-performance InGaAs/InP avalanche photodiode for a 2.5 Gb s-1 optical receiver , 1995 .

[87]  Kenji Kawano,et al.  A high-efficiency 50 GHz InGaAs multimode waveguide photodetector , 1992 .

[88]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[89]  Michael J. Lange,et al.  A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction , 1992 .

[90]  T. Uchida,et al.  High-speed InP/InGaAs avalanche photodiodes with a compositionally graded quaternary layer , 1991, IEEE Photonics Technology Letters.

[91]  K. Fukushima,et al.  Impact ionization rates in , 1990, IEEE Electron Device Letters.

[92]  L. Tarof Planar InP-InGaAs avalanche photodetectors with n-multiplication layer exhibiting a very high gain-bandwidth product , 1990, IEEE Photonics Technology Letters.

[93]  D. G. Knight,et al.  Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery , 1990 .

[94]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[95]  Yoshimasa Sugimoto,et al.  Planar-structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 mu m wavelength optical communication use , 1988 .

[96]  Arthur,et al.  Optical-absorption coefficient of In1-xGaxAs/InP. , 1988, Physical review. B, Condensed matter.

[97]  G. E. Stillman,et al.  Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .

[98]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[99]  A. J. Moseley,et al.  Measurement of absorption coefficients of Ga 0.47 In 0.53 As over the wavelength range 1.0-1.7 μm , 1985 .

[100]  S. R. Forrest Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems , 1985 .

[101]  N. Olsson,et al.  Pseudo‐quaternary GaInAsP semiconductors: A new Ga0.47In0.53As/InP graded gap superlattice and its applications to avalanche photodiodes , 1984 .

[102]  F. Capasso,et al.  Low-dark-current low-voltage 1.3–1.6 μm avalanche photodiode with high-low electric field profile and separate absorption and multiplication regions by molecular beam epitaxy , 1984 .

[103]  High sensitivity of VPE-grown InGaAs/InP-heterostructure APD with buffer layer and guard-ring structure , 1984 .

[104]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[105]  A. Tam,et al.  Remote sensing applications of pulsed photothermal radiometry , 1983 .

[106]  Craig Armiento,et al.  Impact ionization in (100), (110), and (111) oriented InP avalanche photodiodes , 1983 .

[107]  Yuichi Matsushima,et al.  High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers , 1982 .

[108]  S. R. Forrest,et al.  Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .

[109]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[110]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[111]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[112]  Takao Kaneda,et al.  Tunneling Current in InGaAs and Optimum Design for InGaAs/InP Avalanche Photodiode , 1980 .

[113]  Stephen R. Forrest,et al.  Evidence for tunneling in reverse‐biased III‐V photodetector diodes , 1980 .

[114]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[115]  Katsuhiko Nishida,et al.  InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .

[116]  H. Melchior,et al.  Atlanta fiber system experiment: Planar epitaxial silicon avalanche photodiode , 1978, The Bell System Technical Journal.

[117]  Takao Kaneda,et al.  A model for reach‐through avalanche photodiodes (RAPD’s) , 1976 .

[118]  H. Melchior,et al.  Epitaxial silicon n+-p-π-p+avalanche photodiodes for optical fiber communications at 800 to 900 nanometers , 1976, 1976 International Electron Devices Meeting.

[119]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[120]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[121]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[122]  Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art , 1973 .

[123]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[124]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[125]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[126]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .

[127]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[128]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .