A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology.

[1]  P. Ray,et al.  Application of Aptamers for Targeted Therapeutics , 2013, Archivum Immunologiae et Therapiae Experimentalis.

[2]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[3]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[4]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[5]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[6]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[7]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[8]  Z. Dai,et al.  Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing. , 2012, Talanta.

[9]  Andrew B Kinghorn,et al.  APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. , 2015, Chemical communications.

[10]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[11]  Debashish Das,et al.  High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. , 2010, The Journal of infectious diseases.

[12]  Wanqiu Shen,et al.  DNA nanotechnology and its applications in biomedical research. , 2014, Journal of biomedical nanotechnology.

[13]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[14]  Akinori Kuzuya,et al.  Design and construction of a box-shaped 3D-DNA origami. , 2009, Chemical communications.

[15]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[18]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[19]  Thomas H LaBean,et al.  Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. , 2006, Organic & biomolecular chemistry.

[20]  Julian A. Tanner,et al.  Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer , 2013, Proceedings of the National Academy of Sciences.

[21]  Ciara K O'Sullivan,et al.  Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. , 2006, Journal of the American Chemical Society.

[22]  A. Tulinsky,et al.  The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. , 1994, The Journal of biological chemistry.

[23]  Toshio Ando,et al.  Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy. , 2015, Nano letters.

[24]  Akinori Kuzuya,et al.  Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells. , 2014, Nanoscale.

[25]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[26]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[27]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[28]  A. Cass,et al.  Determination of minimal sequence for binding of an aptamer. A comparison of truncation and hybridization inhibition methods , 2014 .

[29]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[30]  Juewen Liu,et al.  Aptamer-based biosensors for biomedical diagnostics. , 2014, The Analyst.

[31]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[32]  Weltgesundheitsorganisation World malaria report , 2005 .

[33]  P Chiodini,et al.  Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH). , 1999, The American journal of tropical medicine and hygiene.

[34]  Jin Woo Jang,et al.  pLDH level of clinically isolated Plasmodium vivax and detection limit of pLDH based malaria rapid diagnostic test , 2013, Malaria Journal.

[35]  Eun Jeong Cho,et al.  Applications of aptamers as sensors. , 2009, Annual review of analytical chemistry.

[36]  R. Piper,et al.  Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. , 1993, The American journal of tropical medicine and hygiene.

[37]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.