On the Stack-Size of General Tries

Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e. , the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural assumptions that encompass all commonly used data models (and more), we obtain a precise average-case and probabilistic analysis of stack-size. Furthermore, we study the dependency between the stack-size and the ordering on symbols in the alphabet: we establish that, when the source emits independent symbols, the optimal ordering arises when the most probable symbol is the last one in this order.

[1]  Markus E. Nebel,et al.  The stack-size of tries: a combinatorial study , 2002, Theor. Comput. Sci..

[2]  Luis Trabb Pardo Set representation and set intersection , 1978 .

[3]  Markus E. Nebel,et al.  On the Horton-Strahler number for combinatorial tries , 2000, RAIRO Theor. Informatics Appl..

[4]  Philippe Flajolet,et al.  An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction , 1997, Combinatorics, Probability and Computing.

[5]  Wojciech Szpankowski,et al.  Some Results on V-ary Asymmetric Tries , 1988, J. Algorithms.

[6]  Mireille Régnier,et al.  Trie hashing analysis , 1988, Proceedings. Fourth International Conference on Data Engineering.

[7]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[8]  Edward Fredkin,et al.  Trie memory , 1960, Commun. ACM.

[9]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[10]  Ronald L. Rivest,et al.  Partial-Match Retrieval Algorithms , 1976, SIAM J. Comput..

[11]  Mireille Régnier,et al.  On the Average Height of Trees in Digital Search and Dynamic Hashing , 1981, Inf. Process. Lett..

[12]  Xavier Gérard Viennot,et al.  Trees Everywhere , 1990, CAAP.

[13]  P. Gács,et al.  Algorithms , 1992 .

[14]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[15]  A. Grothendieck La théorie de Fredholm , 1956 .

[16]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[17]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[18]  Luc Devroye,et al.  On the Horton-Strahler Number for Random Tries , 1996, RAIRO Theor. Informatics Appl..

[19]  Philippe Jacquet,et al.  Analytical Depoissonization and its Applications , 1998, Theor. Comput. Sci..

[20]  de Ng Dick Bruijn,et al.  THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .

[21]  Andrew Chi-Chih Yao,et al.  A Note on the Analysis of Extendible Hashing , 1980, Inf. Process. Lett..

[22]  Philippe Flajolet,et al.  Partial match retrieval of multidimensional data , 1986, JACM.

[23]  Helmut Prodinger,et al.  On the Recursive Depth of Special Tree Traversal Algorithms , 1987, Inf. Comput..

[24]  G. H. Gonnet,et al.  Handbook of algorithms and data structures: in Pascal and C (2nd ed.) , 1991 .