Integrating Path Integral Control With Backstepping Control to Regulate Stochastic System

[1]  Tae Hoon Oh,et al.  Automatic control of simulated moving bed process with deep Q-network. , 2021, Journal of chromatography. A.

[2]  Jong Min Lee,et al.  Model‐based reinforcement learning for nonlinear optimal control with practical asymptotic stability guarantees , 2020 .

[3]  Yu Guo,et al.  Finite Time Fractional-order Adaptive Backstepping Fault Tolerant Control of Robotic Manipulator , 2020 .

[4]  Khac Duc Do,et al.  Backstepping control design for stochastic systems driven by Lévy processes , 2020, Int. J. Control.

[5]  Sang Hwan Son,et al.  Move blocked model predictive control with guaranteed stability and improved optimality using linear interpolation of base sequences , 2020, Int. J. Control.

[6]  Byung Jun Park,et al.  A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system , 2020 .

[7]  Xian Guo,et al.  A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Jong Min Lee,et al.  Backstepping control integrated with Lyapunov-based model predictive control , 2019, Journal of Process Control.

[9]  Nolan Wagener,et al.  Information theoretic MPC for model-based reinforcement learning , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Evangelos A. Theodorou,et al.  Model Predictive Path Integral Control: From Theory to Parallel Computation , 2017 .

[11]  Majid Zamani,et al.  Backstepping design for incremental stability of stochastic Hamiltonian systems , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[12]  James M. Rehg,et al.  Aggressive driving with model predictive path integral control , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Evangelos Theodorou,et al.  Nonlinear Stochastic Control and Information Theoretic Dualities: Connections, Interdependencies and Thermodynamic Interpretations , 2015, Entropy.

[14]  H. Kappen,et al.  Path integral control and state-dependent feedback. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Evangelos Theodorou,et al.  Relative entropy and free energy dualities: Connections to Path Integral and KL control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[16]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[17]  Yuanqing Xia,et al.  Adaptive Backstepping Controller Design for Stochastic Jump Systems , 2009, IEEE Transactions on Automatic Control.

[18]  Panos M. Pardalos,et al.  Approximate dynamic programming: solving the curses of dimensionality , 2009, Optim. Methods Softw..

[19]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[20]  Jay H. Lee,et al.  Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes , 2005, Autom..

[21]  H. Kappen Path integrals and symmetry breaking for optimal control theory , 2005, physics/0505066.

[22]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[23]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[24]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[25]  M. Krstić,et al.  Stochastic nonlinear stabilization—I: a backstepping design , 1997 .

[26]  T. Basar,et al.  Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[27]  W. H. Young On Classes of Summable Functions and their Fourier Series , 1912 .

[28]  Fausto Gozzi,et al.  Stochastic optimal control in infinite dimension : dynamic programming and HJB equations , 2017 .

[29]  Basil Kouvaritakis,et al.  Model Predictive Control , 2016 .

[30]  Khadir Mohamed,et al.  Model Predictive Control: Theory and Design , 2014 .

[31]  Evangelos A. Theodorou,et al.  An iterative path integral stochastic optimal control approach for learning robotic tasks , 2011 .

[32]  P. Hippe,et al.  Optimal Control and Estimation , 2009 .

[33]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[34]  G. Winkler,et al.  The Stochastic Integral , 1990 .