Sparse seasonal and periodic vector autoregressive modeling

Seasonal and periodic vector autoregressions are two common approaches to modeling vector time series exhibiting cyclical variations. The total number of parameters in these models increases rapidly with the dimension and order of the model, making it difficult to interpret the model and questioning the stability of the parameter estimates. To address these and other issues, two methodologies for sparse modeling are presented in this work: first, based on regularization involving adaptive lasso and, second, extending the approach of Davis et al. (2015) for vector autoregressions based on partial spectral coherences. The methods are shown to work well on simulated data, and to perform well on several examples of real vector time series exhibiting cyclical variations.

[1]  Harry L. Hurd,et al.  Periodically correlated random sequences : spectral theory and practice , 2007 .

[2]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[3]  William B. Nicholson,et al.  VARX-L: Structured Regularization for Large Vector Autoregressions with Exogenous Variables , 2015, 1508.07497.

[4]  Rob J Hyndman,et al.  Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing , 2011 .

[5]  Marcelo C. Medeiros,et al.  Estimating High-Dimensional Time Series Models , 2012 .

[6]  H. Hurd,et al.  PARMA methods based on Fourier Representation of Periodic Coefficients , 2016 .

[7]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[8]  C. Giraud Introduction to High-Dimensional Statistics , 2014 .

[9]  Y. Gel,et al.  Influenza Forecasting with Google Flu Trends , 2013, PloS one.

[10]  James W. Taylor Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles , 2010 .

[11]  Mike K. P. So,et al.  Dynamic seasonality in time series , 2014, Comput. Stat. Data Anal..

[12]  Robert Lund,et al.  Choosing Seasonal Autocovariance Structures: PARMA or SARMA? , 2012 .

[13]  Hau-Tieng Wu,et al.  Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors , 2014 .

[14]  Philip Hans Franses,et al.  The Econometric Analysis of Seasonal Time Series , 2005 .

[15]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[16]  Michael I. Jordan,et al.  Learning graphical models for stationary time series , 2004, IEEE Transactions on Signal Processing.

[17]  D. Lazer,et al.  The Parable of Google Flu: Traps in Big Data Analysis , 2014, Science.

[18]  David B. Dunson,et al.  Bayesian nonparametric covariance regression , 2011, J. Mach. Learn. Res..

[19]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[20]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[21]  Neil L. Gerr,et al.  GRAPHICAL METHODS FOR DETERMINING THE PRESENCE OF PERIODIC CORRELATION , 1991 .

[22]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[23]  Nicholas G. Polson,et al.  Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model , 2012, Journal of the American Statistical Association.

[24]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[25]  Chloe Chen Chen Graphical modelling of multivariate time series , 2011 .

[26]  Philip Hans Franses,et al.  Periodic Time Series Models , 1996 .

[27]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[28]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[29]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[30]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[31]  R H Jones,et al.  Time series with periodic structure. , 1967, Biometrika.

[32]  Alicia Karspeck,et al.  Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics , 2014, PLoS Comput. Biol..

[33]  P. Bickel,et al.  Large Vector Auto Regressions , 2011, 1106.3915.

[34]  Mladen Fruk,et al.  Periodic Time Series Models: Advanced Texts in Econometrics , 2005 .

[35]  Tucker McElroy,et al.  Economic Time Series , 2012 .

[36]  Richard A. Davis,et al.  Sparse Vector Autoregressive Modeling , 2012, 1207.0520.

[37]  Roland Fried,et al.  Latent variable analysis and partial correlation graphs for multivariate time series , 2003 .

[38]  Nan-Jung Hsu,et al.  Subset selection for vector autoregressive processes using Lasso , 2008, Comput. Stat. Data Anal..

[39]  Adam J Rothman,et al.  Sparse Multivariate Regression With Covariance Estimation , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[40]  R. Dahlhaus Graphical interaction models for multivariate time series1 , 2000 .

[41]  E. J. Hannan,et al.  Multiple time series , 1970 .

[42]  Denise R. Osborn,et al.  The Econometric Analysis of Seasonal Time Series , 2001 .

[43]  Ali Shojaie,et al.  Discovering graphical Granger causality using the truncating lasso penalty , 2010, Bioinform..

[44]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .