Cfd Simulation of Premixed Flames Propagating in an Obstacles Network

[1]  M. Matalon,et al.  Outwardly growing premixed flames in turbulent media , 2021, Combustion and Flame.

[2]  E. Pastor,et al.  Computational fluid dynamics modelling of hydrocarbon fires in open environments: Literature review , 2020 .

[3]  B. Cantwell,et al.  Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen–air mixture , 2019, Combustion and Flame.

[4]  Guo-xiu Li,et al.  Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions , 2018, Energy.

[5]  Guo-xiu Li,et al.  Effect of flame inherent instabilities on the flame geometric structure characteristics based on wavelet transform , 2018 .

[6]  R. Manceau,et al.  Influence of the turbulence model for channel flows with strong transverse temperature gradients , 2018 .

[7]  D. Veynante,et al.  Large eddy simulation of explosion deflagrating flames using a dynamic wrinkling formulation , 2017 .

[8]  A. Lipatnikov,et al.  Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames , 2017 .

[9]  S. Cant,et al.  Direct Numerical Simulation of the bending effect in turbulent premixed flames , 2017 .

[10]  Guilherme Henrique Santos,et al.  Numerical Study of the b-Ξ Flame Wrinkling Combustion Model in Oracles Test Rig , 2015 .

[11]  G. Ciccarelli,et al.  Combustion wave propagation through a bank of cross-flow cylinders , 2015 .

[12]  M. Radulescu,et al.  Dynamics of unconfined spherical flames: Influence of buoyancy , 2013 .

[13]  N. Swaminathan,et al.  Simulation of Spherically Expanding Turbulent Premixed Flames , 2013 .

[14]  K. Hanjalic,et al.  On the Application of the Levenberg–Marquardt Method in Conjunction with an Explicit Runge–Kutta and an Implicit Rosenbrock Method to Assess Burning Velocities from Confined Deflagrations , 2013, Flow, Turbulence and Combustion.

[15]  Honghao Ma,et al.  Numerical Simulation of Premixed Methane-air Flame Propagating Parameters in Square Tube with Different Solid Obstacles , 2013 .

[16]  S. Ibrahim,et al.  A Comparative Study of Turbulent Premixed Flames Propagating Past Repeated Obstacles , 2012 .

[17]  S. Ibrahim,et al.  Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles , 2011 .

[18]  D. Bradley,et al.  The Problems of the Turbulent Burning Velocity , 2011 .

[19]  Gennaro Russo,et al.  Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles. , 2010, Journal of hazardous materials.

[20]  Tasneem Abbasi,et al.  A scheme for the classification of explosions in the chemical process industry. , 2010, Journal of hazardous materials.

[21]  Sávio S.V. Vianna,et al.  Modified porosity approach and laminar flamelet modelling for advanced simulation of accidental explosions , 2010 .

[22]  Gennaro Russo,et al.  Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles. , 2009, Journal of hazardous materials.

[23]  D. Wilcox Formulation of the k-w Turbulence Model Revisited , 2008 .

[24]  S. Ibrahim,et al.  LES Modeling of Premixed Deflagrating Flames in a Small-Scale Vented Explosion Chamber with a Series of Solid Obstructions , 2008 .

[25]  Dal Jae Park,et al.  Prediction for vented explosions in chambers with multiple obstacles. , 2008, Journal of hazardous materials.

[26]  Dal Jae Park,et al.  Experiments on the effects of multiple obstacles in vented explosion chambers. , 2008, Journal of hazardous materials.

[27]  J. Driscoll Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities , 2008 .

[28]  Campbell D. Carter,et al.  Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities , 2005 .

[29]  M. Haq,et al.  Turbulent burning velocity, burned gas distribution, and associated flame surface definition , 2003 .

[30]  P. Flohr,et al.  A turbulent flame speed closure model for LES of industrial burner flows , 2001 .

[31]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[32]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[33]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[34]  Bjørn H. Hjertager,et al.  Concentration Effects on Flame Acceleration by Obstacles in Large-Scale Methane-Air and Propane-Air Vented Explosions , 1988 .

[35]  Bjørn H. Hjertager,et al.  Pressure development due to turbulent flame propagation in large-scale methaneair explosions , 1982 .

[36]  John H. S. Lee,et al.  Flame acceleration due to turbulence produced by obstacles , 1980 .

[37]  K. Bray,et al.  A unified statistical model of the premixed turbulent flame , 1977 .