Collisional orientation of the benzene molecular plane in supersonic seeded expansions, probed by infrared polarized laser absorption spectroscopy and by molecular beam scattering

The large number of elastic and inelastic collisions which take place during supersonic gaseous expansions produce not only acceleration and internal cooling of molecules, but also their alignment or orientation. The collisional alignment of the rotational angular momentum, corresponding to the orientation of the benzene molecular plane, in supersonic seeded expansions with lighter carrier gases is demonstrated via two complementary experiments: one interrogating benzene via polarized laser light IR absorption the other one probing its orientation via molecular beam scattering on rare gas targets. Typical seeding gases are helium, neon and their mixtures, and molecular hydrogen. Total stagnation pressures are of the order of ∼1 bar and ∼0.1 mm nozzle. A propensity is demonstrated for benzene molecules in seeded molecular beams to fly with the molecular plane preferentially oriented parallel to the molecular beam propagation direction. The analysis of the experimental results has been carried out using a p...

[1]  P. Kusch Notes on Resolution in Scattering Measurements , 1964 .

[2]  R. Bernstein,et al.  Potential-well characteristics from the energy dependence of the glory extrema in total elastic scattering cross sections. , 1967 .

[3]  R. Zare,et al.  Alignment of molecules in gaseous transport: Alkali dimers in supersonic nozzle beams , 1974 .

[4]  V. Aquilanti,et al.  Absolute total elastic cross sections for collisions of oxygen atoms with the rare gases at thermal energies , 1976 .

[5]  F. Pirani,et al.  Absolute total elastic cross sections for collisions of He with Ne, Ar, Kr, and Xe. [Potentials, ESMSV form] , 1977 .

[6]  K. Reed,et al.  Intermolecular potential of anisotropic systems: LiF--Ar and LiF--Kr , 1977 .

[7]  A. Visser,et al.  Angular momentum polarization in molecular beams of I2 and Na2 , 1977 .

[8]  A. Lübbert,et al.  Molecular beam focusing of ICl in rotational states with positive induced electric dipole moments , 1978 .

[9]  J. Plíva,et al.  The spectrum of benzene in the 3-μm region: The ν12 fundamental band ☆ , 1982 .

[10]  R. Zare,et al.  Photofragment Alignment and Orientation , 1982 .

[11]  James B. Anderson,et al.  Alignment of molecular iodine rotation in a seeded molecular beam , 1984 .

[12]  K. Bergmann,et al.  Preparation and detection of alignment with high ‖m‖ selectivity by saturated laser optical pumping in molecular beams , 1986 .

[13]  H. Rubahn,et al.  A molecular beam study of the potential anisotropy of laser vibrationally excited Li2(v=0,20) scattered from Kr , 1988 .

[14]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[15]  H. Loesch,et al.  Brute force in molecular reaction dynamics: A novel technique for measuring steric effects , 1990 .

[16]  D. Herschbach,et al.  Facile alignment of molecular rotation in supersonic beams , 1990 .

[17]  Massimo Inguscio,et al.  Applied laser spectroscopy , 1990 .

[18]  D. Herschbach,et al.  Alignment and orientation of rotationally cool molecules , 1991 .

[19]  D. Bassi,et al.  Opto‐thermal spectroscopy of the benzene 4←0 C–H stretch overtone , 1991 .

[20]  K. Ohashi,et al.  Formation of an intense pulsed beam of CH3Cl in the ‖111≳ state using a 2‐m electrostatic hexapole field , 1993 .

[21]  A. J. McCaffery,et al.  Alignment of diatomic molecules in a free-jet expansion , 1993 .

[22]  L. Menegotti,et al.  The 3←0 CH stretch overtone of benzene , 1993 .

[23]  D. Nesbitt,et al.  COLLISIONAL ALIGNMENT OF CO2 ROTATIONAL ANGULAR MOMENTUM STATES IN A SUPERSONIC EXPANSION , 1994 .

[24]  D. Bassi,et al.  Overtone spectroscopy of the CH stretching mode of partially F-substituted benzenes. I. Pentafluorobenzene , 1994 .

[25]  D. Herschbach,et al.  Collisional Alignment of Molecular Rotation: Simple Models and Trajectory Analysis , 1995 .

[26]  S. Oss,et al.  Infrared spectroscopy of the CH stretching modes of partially F‐substituted benzenes. II. The fundamental spectrum of fluorobenzene , 1995 .

[27]  V. Aquilanti,et al.  Rotational Alignment in Supersonic Seeded Beams of Molecular Oxygen , 1995 .

[28]  Cappelletti,et al.  Scattering of rotationally aligned oxygen molecules and the measurement of anisotropies of van der Waals forces. , 1995, Physical review letters.

[29]  P. Felker,et al.  Spectroscopy of pendular states in optical‐field‐aligned species , 1996 .

[30]  S. Oss,et al.  Infrared spectroscopy of the C–H stretching modes of partially F-substituted benzenes. III. The first overtone of fluorobenzene , 1997 .

[31]  Fernando Pirani,et al.  Molecular Beam Scattering of Nitrogen Molecules in Supersonic Seeded Beams: A Probe of Rotational Alignment , 1997 .

[32]  A. Wodtke,et al.  Anisotropic translational cooling: Velocity dependence of collisional alignment in a seeded supersonic expansion , 1997 .

[33]  V. Aquilanti,et al.  Scattering of aligned molecules. The potential energy surfaces for the Kr-O2 and Xe-O2 systems , 1998 .

[34]  V. Aquilanti,et al.  Quantum interference scattering of aligned molecules: Bonding in O-4 and role of spin coupling , 1999 .

[35]  Fernando Pirani,et al.  Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2−O2 Dimer , 1999 .

[36]  D. Nesbitt,et al.  Dynamics of collisional alignment in supersonic expansions: Trajectory studies of He+CO, O2, and CO2 , 1999 .

[37]  Fernando Pirani,et al.  A quantum mechanical view of molecular alignment and cooling in seeded supersonic expansions , 1999 .

[38]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[39]  V. Aquilanti,et al.  Orientation of benzene in supersonic expansions, probed by IR-laser absorption and by molecular beam scattering. , 2001, Physical review letters.

[40]  V. Aquilanti,et al.  Molecular Beam Scattering Experiments on Benzene−Rare Gas Systems: Probing the Potential Energy Surfaces for the C6H6−He, −Ne, and −Ar Dimers† , 2002 .

[41]  Fernando Pirani,et al.  Potential energy surfaces for the benzene-rare gas systems , 2003 .