Topography of the chromatic pattern-onset VEP.
暂无分享,去创建一个
John S Werner | Michael A Crognale | Peter B. Delahunt | Peter B Delahunt | Christina Gerth | J. Werner | M. Crognale | C. Gerth
[1] Donald C. Hood,et al. Quantifying the benefits of additional channels of multifocal VEP recording , 2002, Documenta Ophthalmologica.
[2] J. Pokorny,et al. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.
[3] G Westheimer,et al. Pupil size and visual resolution. , 1964, Vision research.
[4] J. Mollon,et al. An anomaly in the response of the eye to light of short wavelengths. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[5] C. Yiannikas,et al. The variation of the pattern shift visual evoked response with the size of the stimulus field. , 1983, Electroencephalography and clinical neurophysiology.
[6] D. Hood,et al. The multifocal visual evoked potential and cone-isolating stimuli: implications for L- to M-cone ratios and normalization. , 2002, Journal of vision.
[7] R. Carr,et al. S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. , 1989, Investigative ophthalmology & visual science.
[8] E. Switkes,et al. Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.
[9] E. Switkes,et al. Reply to "specificity and selectivity of chromatic visual evoked potentials". , 1996, Vision research.
[10] M. Sandberg,et al. Blue and green cone mechanisms in retinitis pigmentosa. , 1977, Investigative ophthalmology & visual science.
[11] A. Adams,et al. Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients. , 1982, Investigative ophthalmology & visual science.
[12] D G Pelli,et al. The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.
[13] B Brown,et al. Variation of topographic visually evoked potentials across the visual field. , 1997, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.
[14] S. Graham,et al. Objective perimetry in glaucoma. , 2000, Ophthalmology.
[15] S. Klein,et al. The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.
[16] Ian J. Murray,et al. Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings , 1987 .
[17] G. Celesia,et al. VISUAL EVOKED RESPONSES AND RETINAL ECCENTRICITY , 1980, Annals of the New York Academy of Sciences.
[18] S. Graham,et al. Multifocal objective perimetry in the detection of glaucomatous field loss. , 2002, American journal of ophthalmology.
[19] H. Abe,et al. Mapping of glaucomatous visual field defects by multifocal VEPs. , 2001, Investigative ophthalmology & visual science.
[20] Erich E. Sutter,et al. The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.
[21] S Kangovi,et al. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. , 2000, Investigative ophthalmology & visual science.
[22] Donald C. Hood,et al. A signal-to-noise analysis of multifocal VEP responses: an objective definition for poor records , 2002, Documenta Ophthalmologica.
[23] J. Kulikowski,et al. Specificity and Selectivity of Chromatic Visual Evoked Potentials , 1996, Vision Research.
[24] G B Arden,et al. Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. , 1989, The British journal of ophthalmology.
[25] J. Rovamo,et al. An estimation and application of the human cortical magnification factor , 2004, Experimental Brain Research.
[26] J. GohK. Electroencephalography and Clinical Neurophysiology , 1997 .
[27] S. Graham,et al. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. , 1998, Investigative ophthalmology & visual science.
[28] Erich E. Sutter,et al. The Fast m-Transform: A Fast Computation of Cross-Correlations with Binary m-Sequences , 1991, SIAM J. Comput..
[29] D H Brainard,et al. The Psychophysics Toolbox. , 1997, Spatial vision.
[30] D. Pelli,et al. Display Characterization , 1998 .
[31] Vittorio Porciatti,et al. Normative data for onset VEPs to red-green and blue-yellow chromatic contrast , 1999, Clinical Neurophysiology.
[32] E. Sutter,et al. M and P Components of the VEP and their Visual Field Distribution , 1997, Vision Research.
[33] E. Switkes,et al. Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing , 1994, Vision Research.
[34] R. M. Boynton,et al. Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.
[35] S. Duke-Elder. DOCUMENTA OPHTHALMOLOGICA , 1959 .
[36] B. Brown,et al. Investigation of multifocal visual evoked potential in anisometropic and esotropic amblyopes. , 1998, Investigative ophthalmology & visual science.
[37] H. Spekreijse,et al. Standard for Visual Evoked Potentials 1995 , 1996, Vision Research.
[38] J. Horton,et al. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.
[39] E. Switkes,et al. Comparison of color and luminance contrast: apples versus oranges? , 1999, Vision Research.
[40] P. Lennie,et al. Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.