A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model

This paper is concerned with the estimation of the autoregressive parameter in a widely considered spatial autocorrelation model. The typical estimator for this parameter considered in the literature is the (quasi) maximum likelihood estimator corresponding to a normal density. However, as discussed in the paper, the (quasi) maximum likelihood estimator may not be computationally feasible in many cases involving moderate or large sized samples. In this paper we suggest a generalized moments estimator that is computationally simple irrespective of the sample size. We provide results concerning the large and small sample properties of this estimator.

[1]  Luc Anselin,et al.  Some robust approaches to testing and estimation in spatial econometrics , 1990 .

[2]  Giorgio Topa,et al.  Social interactions, local spillovers and unemployment , 2001 .

[3]  Jan R. Magnus,et al.  Consistent maximum-likelihood estimation with dependent observations: The general (non-normal) case and the normal case , 1986 .

[4]  L. Summers,et al.  Equipment Investment and Economic Growth , 1990 .

[5]  R. Dubin Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms , 1988 .

[6]  A. Case Spatial Patterns in Household Demand , 1991 .

[7]  Benedikt M. Pötscher,et al.  A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations , 1986 .

[8]  Benedikt M. Pötscher,et al.  A UNIFORM LAW OF LARGE NUMBERS FOR DEPENDENT AND HETEROGENEOUS DATA PROCESSES , 1989 .

[9]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[10]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[11]  Carlos Martins-Filho,et al.  A Unified Approach to Asymptotic Equivalence of Aitken and Feasible Aitken Instrumental Variables Estimators , 1994 .

[12]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[13]  Luc Anselin,et al.  Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results , 1995 .

[14]  Robert J. Bennett,et al.  Regional econometric and dynamic models , 1987 .

[15]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[16]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[17]  Benedikt M. Pötscher,et al.  Basic structure of the asymptotic theory in dynamic nonlinear econometric models , 1991 .

[18]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[19]  Reply to comments on basic structure of the asymptotic theory in dynamic nonlinear econometric models. II. asymptotic normality , 1991 .

[20]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[21]  Harry H. Kelejian,et al.  Spatial Correlation: A Suggested Alternative to the Autoregressive Model , 1995 .

[22]  Brent R. Moulton An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit , 1990 .

[23]  Harry H. Kelejian,et al.  A suggested method of estimation for spatial interdependent models with autocorrelated errors, and an application to a county expenditure model , 1993 .

[24]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[25]  Benedikt M. Pötscher,et al.  Basic Elements of Asymptotic Theory , 1999 .

[26]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[27]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .