What can be learned from a chaotic cancer model?

A simple model of three competing cell populations (host, immune and tumor cells) is revisited by using a topological analysis and computing observability coefficients. Our aim is to show that a non-conventional analysis might suggest new trends in understanding the interactions of some tumor cells and their environment. The action of some parameter values on the resulting dynamics is investigated. Our results are related to some clinical features, suggesting that this model thus captures relevant phenomena to cell interactions.

[1]  Alain Arneodo,et al.  Occurence of strange attractors in three-dimensional Volterra equations , 1980 .

[2]  Christophe Letellier,et al.  Relation between observability and differential embeddings for nonlinear dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  J. Yorke,et al.  Antimonotonicity: inevitable reversals of period-doubling cascades , 1992 .

[4]  Christophe Letellier,et al.  Symbolic observability coefficients for univariate and multivariate analysis. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  C. Letellier,et al.  Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization. , 1995, Chaos.

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  M. Tamburini,et al.  Karnofsky and ECOG performance status scoring in lung cancer: a prospective, longitudinal study of 536 patients from a single institution. , 1996, European journal of cancer.

[8]  Avner Friedman,et al.  Mathematical modeling of prostate cancer progression in response to androgen ablation therapy , 2011, Proceedings of the National Academy of Sciences.

[9]  Yuri Kogan,et al.  Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics , 2008, Cancer Immunology, Immunotherapy.

[10]  Jae-Hyun Park,et al.  Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. , 2012, Cancer cell.

[11]  H. Mellstedt,et al.  Clinical results of vaccine therapy for cancer: learning from history for improving the future. , 2006, Advances in cancer research.

[12]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[13]  L. A. Aguirre,et al.  Investigating observability properties from data in nonlinear dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  F. Denis,et al.  Mise au pointThéorie du chaos en radiothérapie : la mésange et le papillon…Radiotherapy and chaos theory: The tit and the butterfly… , 2012 .

[15]  Issam El Naqa,et al.  Monte Carlo role in radiobiological modelling of radiotherapy outcomes , 2012, Physics in medicine and biology.

[16]  C. Maley,et al.  Cancer is a disease of clonal evolution within the body1–3. This has profound clinical implications for neoplastic progression, cancer prevention and cancer therapy. Although the idea of cancer as an evolutionary problem , 2006 .

[17]  J. Coste,et al.  Asymptotic Behaviors in the Dynamics of Competing Species , 1979 .

[18]  Zvi Fuks,et al.  Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis , 2003, Science.

[19]  T. Vincent,et al.  An evolutionary model of carcinogenesis. , 2003, Cancer research.

[20]  O. Rössler An equation for continuous chaos , 1976 .

[21]  A. Dudek,et al.  Vaccine therapy for metastatic melanoma: systematic review and meta-analysis of clinical trials , 2011, Melanoma research.

[22]  D. Karnofsky The clinical evaluation of chemotherapeutic agents in cancer , 1949 .

[23]  Robert A Gatenby,et al.  Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. , 2003, Molecular cancer therapeutics.

[24]  Judith Campisi,et al.  Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B , 2012, Nature Medicine.

[25]  F. Denis,et al.  Théorie du chaos en radiothérapie : la mésange et le papillon… , 2012 .

[26]  C. Drake,et al.  Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. , 2012, The New England journal of medicine.

[27]  S. Tavazoie,et al.  A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells , 2011, Nature.

[28]  J. Peyraud,et al.  Strange attractors in volterra equations for species in competition , 1982, Journal of mathematical biology.

[29]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[30]  Ami Radunskaya,et al.  The dynamics of an optimally controlled tumor model: A case study , 2003 .

[31]  J. Sprott,et al.  Chaos in low-dimensional Lotka–Volterra models of competition , 2006 .

[32]  Nicholas B. Tufillaro,et al.  Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.

[33]  Stephen P. Banks,et al.  Chaos in a Three-Dimensional Cancer Model , 2010, Int. J. Bifurc. Chaos.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Hong Peng,et al.  Interactions between cancer stem cells and their niche govern metastatic colonization , 2011, Nature.

[36]  A. Perelson,et al.  Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. , 1994, Bulletin of mathematical biology.

[37]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[38]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[39]  U. Foryś Multi‐dimensional Lotka–Volterra systems for carcinogenesis mutations , 2009 .

[40]  Christophe Letellier,et al.  Interplay between synchronization, observability, and dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  C. Conill,et al.  Performance status assessment in cancer patients , 1990, Cancer.

[42]  D. Kirschner,et al.  Modeling immunotherapy of the tumor – immune interaction , 1998, Journal of mathematical biology.

[43]  Ulrich Parlitz,et al.  Bifurcation structure of bubble oscillators , 1990 .

[44]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[45]  Luis A. Aguirre,et al.  Observability of multivariate differential embeddings , 2005 .

[46]  Luis A. Aguirre,et al.  How the choice of the observable may influence the analysis of nonlinear dynamical systems , 2006 .

[47]  F. Denis,et al.  [Chaos theory: a fascinating concept for oncologists]. , 2012, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[48]  P. Schellhammer,et al.  Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  J. Fowler The linear-quadratic formula and progress in fractionated radiotherapy. , 1989, The British journal of radiology.

[50]  J. Nagy Competition and natural selection in a mathematical model of cancer , 2004, Bulletin of mathematical biology.

[51]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[52]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[53]  Luis A. Aguirre,et al.  Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables. , 2002, Chaos.