Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications.

The Faraday effect provides a mechanism for achieving unidirectional light propagation in optical isolators; however, miniaturization requires large Verdet constants. High rare-earth content glasses produce suitably large Verdet values, but intrinsic fabrication problems remain. The novel powder-intube method, or a single-draw rod-in-tube method, obviates these difficulties. The powder-in-tube method was used to make silica-clad optical fibers with a high terbium oxide content aluminosilicate core. Core diameters of 2.4 µm were achieved in 125-µm-diameter fibers, with a numerical aperture of 0.35 and a Verdet constant of -20.0 rad/(T m) at 1.06 µm. This value is greater than 50% for crystals found in current isolator systems. This development could lead to all-fiber isolators of dramatically lower cost and ease of fabrication compared with their crystalline competitors.

[1]  T. Zarubina,et al.  Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region , 1991 .

[2]  J. E. Shelby,et al.  Rare‐Earth Aluminosilicate Glasses , 1990 .

[3]  R. Tumminelli,et al.  SiO(2)-clad fibers with selectively volatilized soft-glass cores. , 1989, Optics letters.

[4]  Wavelength independent Faraday isolator. , 1989, Applied optics.

[5]  M J. Weber,et al.  Faraday Rotator Materials For Laser Systems , 1987, Optics & Photonics.

[6]  M. Urban,et al.  Bonding anomalies in the rare earth sesquioxides , 1987 .

[7]  A. Makishima,et al.  Formation of Aluminosilicate Glasses Containing Rare‐Earth Oxides , 1982 .

[8]  S. Collocott,et al.  Magneto-optical properties of erbium-doped soda glass , 1978 .

[9]  H. Laquer,et al.  THE FARADAY EFFECT AT LOW TEMPERATURES IN TERBIUM ALUMINA SILICATE GLASS , 1967 .

[10]  Nicholas F. Borrelli,et al.  Faraday Rotation in Glasses , 1964 .

[11]  C. C. Robinson,et al.  Faraday Rotation in Praseodymium, Terbium, and Dysprosium Alumina Silicate Glasses , 1964 .

[12]  C. C. Robinson,et al.  The Faraday Rotation of Diamagnetic Glasses from 0.334 μ to1.9 μ , 1964 .

[13]  S. B. Berger,et al.  Faraday Rotation of Rare-Earth (III) Phosphate Glasses , 1964 .

[14]  N. Bloembergen,et al.  FARADAY ROTATION OF RARE-EARTH IONS IN CaF$sub 2$. II. EXPERIMENTS , 1964 .

[15]  Y. Shen FARADAY ROTATION OF RARE-EARTH IONS. I. THEORY , 1964 .

[16]  G. Dieke,et al.  The Spectra of the Doubly and Triply Ionized Rare Earths , 1963 .

[17]  E. Snitzer Cylindrical Dielectric Waveguide Modes , 1961 .

[18]  E. Snitzer,et al.  Observed Dielectric Waveguide Modes in the Visible Spectrum , 1961 .

[19]  Philip M. Morse,et al.  The Theory of Electric and Magnetic Susceptibilities , 1932 .

[20]  H. Becquerel Sur une interprétation appligarle au phénomène de Faraday et au phénomène de Zeeman , 2022 .

[21]  Michael Faraday,et al.  On the magnetization of light and the illumination of magnetic lines of force , 1846 .