Manager ’ s Preferences Modeling Within Multi-Criteria Flowshop Scheduling Problem : A Metaheuristic Approach

This paper proposes a metaheuristic to solve the permutation flow shop scheduling problem where several criteria are to be considered, i.e., the makespan, total flowtime and total tardiness of jobs. The proposed metaheuristic is based on tabu search algorithm. The Compromise Programming model and the concept of satisfaction functions are utilized to integrate explicitly the manager’s preferences. The proposed approach has been tested through a computational experiment. This approach can be useful for large scale scheduling problems and the manager can consider additional scheduling criteria.

[1]  Clarisse Dhaenens,et al.  Parallel partitioning method (PPM): A new exact method to solve bi-objective problems , 2007, Comput. Oper. Res..

[2]  Vinícius Amaral Armentano,et al.  An Application of a Multi-Objective Tabu Search Algorithm to a Bicriteria Flowshop Problem , 2004, J. Heuristics.

[3]  Chandrasekharan Rajendran,et al.  A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs , 2005, Eur. J. Oper. Res..

[4]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[5]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[6]  Jean-Marc Martel,et al.  Incorporating the Decision-maker's Preferences in the Goal-programming Model , 1990 .

[7]  Venkata Ranga Neppalli,et al.  Minimizing total flow time in a two-machine flowshop problem with minimum makespan , 2001 .

[8]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[9]  Marc Gravel,et al.  Optimisation Multi-Objectifs À L'Aide D'Un Algorithme De Colonie De Fourmis , 2004 .

[10]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[11]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[12]  Jose M. Framiñan,et al.  A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria , 2008, OR Spectr..

[13]  Marc Gravel,et al.  Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems , 2005, J. Oper. Res. Soc..

[14]  Chandrasekharan Rajendran,et al.  A simulated annealing heuristic for scheduling in a flowshop with bicriteria , 1994 .

[15]  J E C Arroyo,et al.  A partial enumeration heuristic for multi-objective flowshop scheduling problems , 2004, J. Oper. Res. Soc..

[16]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[17]  Taïcir Loukil,et al.  Production , Manufacturing and Logistics Solving multi-criteria scheduling flow shop problem through compromise programming and satisfaction functions , 2008 .

[18]  R. L. Daniels,et al.  Multiobjective flow-shop scheduling , 1990 .

[19]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[20]  Murat Köksalan,et al.  Note: Bicriteria scheduling for minimizing flow time and maximum tardiness , 1996 .

[21]  Milan Zeleny,et al.  Multiple Criteria Decision Making (MCDM) , 2004 .

[22]  Ali Allahverdi,et al.  A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness , 2004, Comput. Oper. Res..

[23]  Taïcir Loukil,et al.  Solving multi-objective production scheduling problems using metaheuristics , 2005, Eur. J. Oper. Res..