Substitution Patterns Understood through Chemical Pressure Analysis: Atom/Dumbbell and Ru/Co Ordering in Derivatives of YCo5

Interstitials, mixed occupancy, and partial substitution of one geometrical motif for another are frequently encountered in the structure refinements of intermetallic compounds as disorder or the formation of superstructures. In this article, we illustrate how such phenomena can serve as mechanisms for chemical pressure (CP) release in variants of the CaCu5 type. We begin by comparing the density functional theory CP schemes of YCo5, an f-element free analogue of the permanent magnet SmCo5, and its superstructure variant Y2Co17 = [Y2(Co2)1]Co15 (Th2Zn17-type) in which one-third of the Y atoms are replaced by Co2 dumbbells. The CP scheme of the original YCo5 structure reveals intensely anisotropic pressures acting on the Y atoms (similar to CP schemes of other CaCu5-type phases). The Y atoms experience large negative pressures along the length of the hexagonal channels they occupy while being simultaneously squeezed by the channel walls. Moving to the Y2Co17 structure provides significant relief to this CP...

[1]  T. Welberry,et al.  One hundred years of diffuse scattering , 2016 .

[2]  G. Miller,et al.  On the structural chemistry of gamma-brasses: two different interpenetrating networks in ternary F-cell Pd-Zn-Al phases. , 2010, Chemistry.

[3]  Volker L. Deringer,et al.  Chemical modeling of mixed occupations and site preferences in anisotropic crystal structures: case of complex intermetallic borides. , 2012, Inorganic chemistry.

[4]  J Schweizer,et al.  Polarised neutron study of the RCo5 intermetallic compounds. I. The cobalt magnetisation in YCo5 , 1980 .

[5]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[6]  W. Ostertag,et al.  Rare earth cobalt compounds with the A2B17 structure , 1966 .

[7]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[8]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  R. Černý,et al.  Local atomic order in the vicinity of Cu2 dumbbells in TbCu7-type YCu6.576 studied by Bragg and total scattering techniques , 2009 .

[10]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[11]  Chick C. Wilson A basic introduction to thermal motions of atoms in crystal structures, the underlying potentials and the physical information available from their analysis , 2009 .

[12]  D. Fredrickson,et al.  First-Principles Elucidation of Atomic Size Effects Using DFT-Chemical Pressure Analysis: Origins of Ca36Sn23's Long-Period Superstructure. , 2013, Journal of chemical theory and computation.

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  G. Oszlányi,et al.  Ab initio structure solution by charge flipping. II. Use of weak reflections. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[15]  D. Fredrickson DFT-chemical pressure analysis: visualizing the role of atomic size in shaping the structures of inorganic materials. , 2012, Journal of the American Chemical Society.

[16]  J. Pospíšil,et al.  Influence of Ru on magnetic properties of Y2T17 (T = Fe, Co) and Y2Fe16Si single crystals , 2015 .

[17]  B. Harbrecht,et al.  Pd(0.213)Cd(0.787) and Pd(0.235)Cd(0.765) structures: their long c axis and composite crystals, chemical twinning, and atomic site preferences. , 2007, Chemistry.

[18]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[19]  Brandon J. Kilduff,et al.  Chemical Pressure-Driven Incommensurability in CaPd5: Clues to High-Pressure Chemistry Offered by Complex Intermetallics. , 2016, Inorganic chemistry.

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  G. Oszlányi,et al.  Ab initio structure solution by charge flipping. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[22]  Brandon J. Kilduff,et al.  Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics. , 2014, Journal of chemical theory and computation.

[23]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[24]  K. Buschow,et al.  Intermetallic compounds of rare-earth and 3d transition metals , 1977 .

[25]  G. Miller,et al.  Experimental and theoretical studies of elemental site preferences in quasicrystalline approximants (R-phases) within the Li-Mg-Zn-Al system. , 2001, Inorganic chemistry.

[26]  G. Hoffer,et al.  Magnetocrystalline anisotropy of YCo 5 and Y 2 Co 17 , 1966 .

[27]  P. Larson,et al.  Magnetic properties of SmCo5 and YCo5 , 2003 .

[28]  Fernando Nogueira,et al.  Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine , 2008, Comput. Phys. Commun..

[29]  H. Fujii,et al.  Magnetic and crystallographic properties of substituted Ce2Co17−xTx compounds (T = Ti, V, Cr, Mn, Fe, Cu, Zr, and Hf) , 1982 .

[30]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[31]  B. Malaman,et al.  Origins of superstructure ordering and incommensurability in stuffed CoSn-type phases. , 2008, Journal of the American Chemical Society.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  M. Sapiro,et al.  Mg11Cu6Al12, A New Link in the Structural Chemistry of MgCu2‐Type Clusters , 2011 .

[34]  Y. Khan On the crystal structures of the R2Co17 intermetallic compounds , 1973 .

[35]  Atomic site preferences and its effect on magnetic structure in the intermetallic borides M2Fe(Ru0.8T0.2)5B2 (M=Sc, Ti, Zr; T=Ru, Rh, Ir) , 2012 .

[36]  R. E. Rundle,et al.  Compounds of thorium with transition metals. I. The thorium–manganese system , 1952 .

[37]  K. Buschow,et al.  Composition and crystal structure of hexagonal Cu-rich rare earth–copper compounds , 1971 .

[38]  R. E. Rundle,et al.  Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel , 1956 .

[39]  W. Kelin,et al.  Site preference of alloying additions in intermetallic compounds , 1993 .

[40]  G. Miller,et al.  Valence state driven site preference in the quaternary compound Ca5MgAgGe5: an electron-deficient phase with optimized bonding. , 2014, Inorganic chemistry.

[41]  W. Ostertag Crystallographic data for YCo3 and Y2Co17 , 1965 .

[42]  H. C. Longuet-Higgins,et al.  Molecular Orbital Calculations on Porphine and Tetrahydroporphine , 1950 .

[43]  H. Franzen,et al.  The Stabilization of Ternary Early Transition-Metal Sulfides and Phosphides at High Temperatures by Differential Site Occupancy , 1996 .

[44]  P. Canfield,et al.  The coloring problem in intermetallics: bonding and properties of Tb3Zn3.6Al7.4 with the La3Al11 structure type , 2005 .

[45]  Fuqiang Huang,et al.  Crystal structure and magnetic properties of the intermetallic compounds La2Co17-xMx (M = Nb, Mo, Mn) , 1999 .

[46]  B. Harbrecht,et al.  Structure–Composition Relations for the Partly Disordered Hume‐Rothery Phase Ir7+7δZn97−11δ (0.31≤δ≤0.58) , 2004 .

[47]  D. Fredrickson,et al.  Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result. , 2014, Inorganic chemistry.

[48]  B. Szpunar Density of states and magnetic properties of YCo5 and Y2Co17 compounds , 1985 .

[49]  D. Niarchos,et al.  Structural and magnetic properties of a novel compound with Y3(Fe, V)29 stoichiometry and disordered CaCu5-type structure , 1998 .

[50]  M. Solzi,et al.  Phenomenological analysis of the magnetocrystalline anisotropy of the Co sublattice in some rhombohedral and hexagonal intermetallic structures derived from the CaCu5 unit cell , 1992 .

[51]  Dong Woo Lee,et al.  Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27}: Solid-state synthesis, crystal structure and site-preference , 2016 .

[52]  F. J. Spooner,et al.  The crystal structure of Zr4Al3 , 1960 .

[53]  Y. Makino Structural design of intermetallics: structural mapping, site preference of third alloying element and planar defects , 1996 .

[54]  B. Shen,et al.  Structure, exchange interactions, and magnetic phase transition of Er2Fe17-xAlx intermetallic compounds , 1998 .

[55]  D. Fredrickson,et al.  Chemical Pressure Schemes for the Prediction of Soft Phonon Modes: A Chemist’s Guide to the Vibrations of Solid State Materials , 2016 .

[56]  J. Corbett,et al.  Synthesis, structure, and characterization of a cubic thallium cluster phase of the Bergman type, Na13(Cd-0.70Tl-0.30)27. , 2004, Inorganic chemistry.

[57]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[58]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[59]  D. Fredrickson Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in Ca2Ag7. , 2011, Journal of the American Chemical Society.

[60]  W. Steurer The Samson phase, β-Mg2Al3, revisited , 2007 .

[61]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[62]  P. Jana,et al.  Structures of NiCd6+δ (−0.32 ≤ δ ≤ 0.35) – a γ-brass related phase, and NiCd1+δ (0 ≤ δ ≤ 0.05) – a Ti2Ni type phase in the nickel–cadmium system , 2013 .

[63]  B. Harbrecht,et al.  Site preference and ordering induced by Au substitution in the γ-brass related complex Au-Cr-Zn phases. , 2013, Inorganic chemistry.

[64]  D. Fredrickson,et al.  New roles for icosahedral clusters in intermetallic phases: micelle-like segregation of Ca-Cd and Cu-Cd interactions in Ca10Cd27Cu2. , 2013, Journal of the American Chemical Society.

[65]  R. Hoffmann,et al.  Interpenetrating polar and nonpolar sublattices in intermetallics: the NaCd(2) structure. , 2007, Angewandte Chemie.

[66]  B. M. Gimarc Topological charge stabilization , 1983 .

[67]  K. Urban,et al.  Structurally complex alloy phases , 2004 .

[68]  Jiang Shen,et al.  Theoretical Investigation on the Phase Stability and Site Preference of R(Co,T)12 and R(Co,T)12Nx(R=Y, Ce, Pr, Nd, Sm, Gd, Tb, Ho, Er, Dy, T=Mo, Mn, Ni) , 2003 .

[69]  P. Jana CrZn17+delta (-0.75 , 2014 .

[70]  D. Fredrickson,et al.  Problem solving with pentagons: Tsai-type quasicrystal as a structural response to chemical pressure. , 2013, Inorganic chemistry.

[71]  G. Miller,et al.  Crystal Structures and Stabilities of γ- and γ′-Brass Phases in Pd2–xAuxZn11 (x = 0.2–0.8): Vacancies vs. Valence Electron Concentration , 2011 .

[72]  Bonding and Site Preferences in the New Quasi-Binary Zr2.7Hf11.3P9 , 1998 .

[73]  The “Coloring Problem” in Solids: How It Affects Structure, Composition and Properties , 1998 .

[74]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .