Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals

Ministry of Education, Science, Sports and Culture of Japan; Russian Foundation for Basic Research; Presidium of Russian Academy of Sciences.

[1]  K. Ueda,et al.  New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxide: two-band tunable CW generation of Yb3+:Sc2O3 with laser-diode pumping and the dispersion of refractive index in the visible and near-IR of undoped Sc2O3 , 2007 .

[2]  Ken-ichi Ueda,et al.  Yb3+-doped Y3Al5O12 ceramics – A new solid-state laser material , 2003 .

[3]  H. Yagi,et al.  Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants , 2008 .

[4]  W. Krupke,et al.  Ytterbium solid-state lasers. The first decade , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Ken-ichi Ueda,et al.  Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics , 2007 .

[6]  Jun Xu,et al.  Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique , 2006 .

[7]  R. Byer,et al.  Edge-pumped quasi-three-level slab lasers: design and power scaling , 2000, IEEE Journal of Quantum Electronics.

[8]  T. Fan,et al.  Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. , 1994, Optics letters.

[9]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[10]  Hideki Yagi,et al.  Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers. , 2007, Optics express.

[11]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[12]  Ken-ichi Ueda,et al.  All-ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser , 2006 .

[13]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[14]  Robert L. Byer,et al.  Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment , 1997 .

[15]  H. Eichler,et al.  New nonlinear-laser effects in crystalline fine-grained ceramics based on cubic Sc2O3 and Lu2O3 oxides: second and third harmonic generation, and cascaded self-sum-frequency mixing in UV spectral region , 2008 .

[16]  Steven B. Sutton,et al.  High-power dual-rod Yb:YAG laser , 2000 .

[17]  Ken-ichi Ueda,et al.  Temperature-tuning Yb:YAG microchip lasers , 2005 .

[18]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[19]  Peizhi Yang,et al.  Concentration quenching in Yb:YAG , 2002 .

[20]  Ken-ichi Ueda,et al.  Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser , 2005 .

[21]  Ken-ichi Ueda,et al.  Efficient Yb3+:Y3Al5O12 ceramic microchip lasers , 2006 .

[22]  K. Ueda,et al.  Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser , 2007 .

[23]  D. Pawlak,et al.  Structure of YAG crystals doped/substituted with erbium and ytterbium. , 2004, Inorganic chemistry.

[24]  Jun Xu,et al.  The influence of Yb concentration on laser crystal Yb:YAG , 2002 .

[25]  A. Giesen,et al.  Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm. , 1995, Optics letters.

[26]  Ken-ichi Ueda,et al.  Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials , 2002 .

[27]  K. Otsuka,et al.  Polarization properties of laser-diode-pumped micro-grained Nd:YAG ceramic lasers , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[28]  David S. Sumida,et al.  Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers , 1997 .

[29]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[30]  Xiaodong Xu,et al.  Upconversion luminescence in Yb3+-doped yttrium aluminum garnets , 2005 .

[31]  Fuxi Gan,et al.  Defects in YAG:Yb crystals , 1998 .

[32]  Random-wavelength solid-state laser , 2004 .

[33]  Ken-ichi Ueda,et al.  Highly Efficient Flashlamp-Pumped Cr3+ and Nd3+ Codoped Y3Al5O12 Ceramic Laser , 2006 .

[34]  Y. Sakabe,et al.  Picosecond Raman induced Stokes and anti-Stokes lasing in fine-grained Ba(Sn,Zr,Mg,Ta)O3 crystalline ceramics with the cubic perovskite structure , 2007 .

[35]  C. Goutaudier,et al.  Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X , 2004 .

[36]  K. Ueda,et al.  Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part I: Experiments , 2007 .

[37]  Jie Song,et al.  Highly Efficient Nd:Y3Al5O12 Ceramic Laser , 2001 .

[38]  H. Yagi,et al.  Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW , 2007 .

[39]  J. Bisson,et al.  Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics , 2004 .

[40]  Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser , 2007 .

[41]  H. Yagi,et al.  Optical properties and highly efficient laser oscillation of Nd:YAG ceramics , 2000, CLEO 2000.

[42]  Jun Xu,et al.  Comparison of Yb:YAG crystals grown by CZ and TGT method , 2003 .

[43]  Hideki Yagi,et al.  Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. , 2007, Optics letters.

[44]  A. Giesen,et al.  A 1-kW CW thin disc laser , 2000, IEEE Journal of Selected Topics in Quantum Electronics.