PCA versus LDA

In the context of the appearance-based paradigm for object recognition, it is generally believed that algorithms based on LDA (linear discriminant analysis) are superior to those based on PCA (principal components analysis). In this communication, we show that this is not always the case. We present our case first by using intuitively plausible arguments and, then, by showing actual results on a face database. Our overall conclusion is that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.

[1]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[2]  B. V. K. Vijaya Kumar,et al.  Efficient Calculation of Primary Images from a Set of Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[4]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[6]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  D. Stuss,et al.  Cognitive neuroscience. , 1993, Current opinion in neurobiology.

[9]  Hiroshi Murase,et al.  Learning and recognition of 3D objects from appearance , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[10]  Hiroshi Murase,et al.  Subspace methods for robot vision , 1996, IEEE Trans. Robotics Autom..

[11]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[16]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[17]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[18]  A. Martínez,et al.  The AR face databasae , 1998 .

[19]  Kevin W. Bowyer,et al.  Empirical evaluation techniques in computer vision , 1998 .

[20]  Aleix M. Martínez,et al.  Recognition of partially occluded and/or imprecisely localized faces using a probabilistic approach , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[21]  Sanghoon Kim,et al.  Computational Analysis of PCA-based Face Recognition Algorithms , 2003 .