On the Regularity of the Composition of Diffeomorphisms

For $M$ a closed manifold or the Euclidean space $\mathbb{R}^n$, the authors present a detailed proof of regularity properties of the composition of $H^s$-regular diffeomorphisms of $M$ for $s > \frac{1}{2}\dim M 1$.

[1]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[2]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[3]  Thomas Kappeler,et al.  On geodesic exponential maps of the Virasoro group , 2007 .

[4]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[5]  Hideki Omori Infinite-Dimensional Lie Groups , 1996 .

[6]  S. Alinhac Paracomposition et operateurs paradifferentiels , 1986 .

[7]  Riemannian Exponential Maps of the Diffeomorphism Group of T2 , 2008 .

[8]  S. Lang Fundamentals of differential geometry , 1998 .

[9]  Jürg T. Marti Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems , 1986 .

[10]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[11]  B. Khesin,et al.  The Geometry of Infinite-Dimensional Groups , 2009 .

[12]  Analyticity of Riemannian exponential maps on ${\rm Diff}(\T)$ , 2006, math/0610211.

[13]  R. Llave,et al.  Regularity of the composition operator in spaces of Hölder functions , 1998 .

[14]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[15]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[16]  Vyacheslav S. Rychkov,et al.  On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .

[17]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[18]  Shock waves for the Burgers equation and curvatures of diffeomorphism groups , 2007, math/0702196.

[19]  Shinar Kouranbaeva The Camassa–Holm equation as a geodesic flow on the diffeomorphism group , 1998, math-ph/9807021.

[20]  M. Atiyah,et al.  Seminar on the Atiyah-Singer Index Theorem. , 1968 .

[21]  Halldór I. Elíasson Geometry of manifolds of maps , 1967 .

[22]  R. Abraham,et al.  Hamiltonian mechanics on Lie groups and hydrodynamics , 1970 .

[23]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[24]  J. Wloka,et al.  Partial differential equations , 1987 .

[25]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[26]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[27]  Peter W. Michor Some Geometric Evolution Equations Arising as Geodesic Equations on Groups of Diffeomorphisms Including the Hamiltonian Approach , 2006 .

[28]  J. Robbin,et al.  Transversal mappings and flows , 2008 .

[29]  G. Misiołek Classical solutions of the periodic Camassa—Holm equation , 2002 .

[30]  Camillo De Lellis,et al.  Low-Regularity Solutions of the Periodic Camassa–Holm Equation , 2007 .

[31]  Richard S. Palais,et al.  Foundations of global non-linear analysis , 1968 .

[32]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[33]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .