On the Regularity of the Composition of Diffeomorphisms
暂无分享,去创建一个
[1] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[2] Gerard Misio łek. A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .
[3] Thomas Kappeler,et al. On geodesic exponential maps of the Virasoro group , 2007 .
[4] J. Escher,et al. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .
[5] Hideki Omori. Infinite-Dimensional Lie Groups , 1996 .
[6] S. Alinhac. Paracomposition et operateurs paradifferentiels , 1986 .
[7] Riemannian Exponential Maps of the Diffeomorphism Group of T2 , 2008 .
[8] S. Lang. Fundamentals of differential geometry , 1998 .
[9] Jürg T. Marti. Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems , 1986 .
[10] P. Michor,et al. The Convenient Setting of Global Analysis , 1997 .
[11] B. Khesin,et al. The Geometry of Infinite-Dimensional Groups , 2009 .
[12] Analyticity of Riemannian exponential maps on ${\rm Diff}(\T)$ , 2006, math/0610211.
[13] R. Llave,et al. Regularity of the composition operator in spaces of Hölder functions , 1998 .
[14] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[15] A. Constantin,et al. Geodesic flow on the diffeomorphism group of the circle , 2003 .
[16] Vyacheslav S. Rychkov,et al. On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .
[17] Athanassios S. Fokas,et al. Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .
[18] Shock waves for the Burgers equation and curvatures of diffeomorphism groups , 2007, math/0702196.
[19] Shinar Kouranbaeva. The Camassa–Holm equation as a geodesic flow on the diffeomorphism group , 1998, math-ph/9807021.
[20] M. Atiyah,et al. Seminar on the Atiyah-Singer Index Theorem. , 1968 .
[21] Halldór I. Elíasson. Geometry of manifolds of maps , 1967 .
[22] R. Abraham,et al. Hamiltonian mechanics on Lie groups and hydrodynamics , 1970 .
[23] J. Burgers. A mathematical model illustrating the theory of turbulence , 1948 .
[24] J. Wloka,et al. Partial differential equations , 1987 .
[25] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[26] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[27] Peter W. Michor. Some Geometric Evolution Equations Arising as Geodesic Equations on Groups of Diffeomorphisms Including the Hamiltonian Approach , 2006 .
[28] J. Robbin,et al. Transversal mappings and flows , 2008 .
[29] G. Misiołek. Classical solutions of the periodic Camassa—Holm equation , 2002 .
[30] Camillo De Lellis,et al. Low-Regularity Solutions of the Periodic Camassa–Holm Equation , 2007 .
[31] Richard S. Palais,et al. Foundations of global non-linear analysis , 1968 .
[32] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[33] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .