An augmented Lagrangian multi-scale dictionary learning algorithm

Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many researchers in the recent years, while most of the existing approaches have a serious problem that they always lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning algorithm (ALM-DL), which is achieved by first recasting the constrained dictionary learning problem into an AL scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical tests for synthetic data and denoising applications on real images demonstrate the superior performance of the proposed approach.

[1]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[2]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[3]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[4]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[5]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[8]  Allen Y. Yang,et al.  Face recognition by sparse representation , 2012, Compressed Sensing.

[9]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[10]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[11]  Mike E. Davies,et al.  Parametric Dictionary Design for Sparse Coding , 2009, IEEE Transactions on Signal Processing.

[12]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[13]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[14]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[15]  Christian Jutten,et al.  Parametric dictionary learning using steepest descent , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[17]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[18]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[19]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[20]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[21]  José M. Bioucas-Dias,et al.  Adaptive total variation image deblurring: A majorization-minimization approach , 2009, Signal Process..

[22]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[23]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[24]  Michael Elad,et al.  Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.

[25]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[26]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[27]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[28]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[29]  Michael Elad,et al.  Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..

[30]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[31]  Masashi Sugiyama,et al.  Dual-Augmented Lagrangian Method for Efficient Sparse Reconstruction , 2009, IEEE Signal Processing Letters.

[32]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[33]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[34]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[35]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[36]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[37]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[38]  Jean-Yves Tourneret,et al.  Bayesian Orthogonal Component Analysis for Sparse Representation , 2009, IEEE Transactions on Signal Processing.

[39]  Wotao Yin,et al.  A Fixed-Point Continuation Method for L_1-Regularization with Application to Compressed Sensing , 2007 .