NONEMPIRICAL WAVE FUNCTIONS FOR VERY LARGE MOLECULES. I. THE PRDDO/M METHOD

The authors describe enhancements to the method of partial retention of diatomic differential overlap (PRDDO). The new method, denoted PRDDO/M, employs a basis set of not quite orthogonal atomic orbitals (NQOAOS) and utilizes sparse matrix techniques to greatly increase the computational efficiency for large molecules. Other modifications, including a complete reparametrization of the method against ab initio STO-3G calculations and implementation of integral screening/damping algorithms, are described. The method is an order of magnitude or more faster than are STO 3G single-point calculations using modern ab initio codes, with little loss in accuracy. 15 refs., 5 figs., 6 tabs.

[1]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[2]  J. R. Wazer,et al.  Pseudopotential SCF method for valence-only molecular calculations , 1975 .

[3]  D. Marynick,et al.  A molecular orbital study of conformational preferences of the cyclopentadienyl ligand in titanium(IV) and titanium(III) complexes , 1989 .

[4]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[5]  F. U. Axe,et al.  Equilibrium geometries of transition metal complexes. A comparison of approximate molecular orbital theory and experiment , 1983 .

[6]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[7]  D. Marynick,et al.  LOCALIZED MOLECULAR ORBITAL STUDIES ON TRANSITION-METAL COMPLEXES. III. LOCALIZED VALENCE STRUCTURES OF TRANSITION-METAL CARBENE COMPLEXES , 1985 .

[8]  R. Friesner,et al.  Pseudospectral Hartree-Fock gradient calculations , 1991 .

[9]  M. Klobukowski,et al.  Model potentials for molecular calculations. I. The sd‐MP set for transition metal atoms Sc through Hg , 2022 .

[10]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[11]  W. Lipscomb,et al.  Self‐consistent‐field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap , 1973 .

[12]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[13]  R. N. Euwema,et al.  Charge‐conserving integral approximations for ab initio quantum chemistry , 1974 .

[14]  D. Marynick,et al.  Metal-Assisted Pyramidal Inversion in Metal-Phosphido Complexes , 1994 .

[15]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[16]  Y. Sakai New developments in the model potential method , 1981 .

[17]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[18]  H. Blöcker,et al.  Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. , 1994, The Journal of biological chemistry.

[19]  C. A. Jolly,et al.  The direct insertion mechanism in Ziegler-Natta polymerization: a theoretical study of Cp2TiCH3+ + C2H4 .fwdarw. Cp2TiC3H7+ , 1989 .

[20]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[21]  H. Levy,et al.  Simple Analytic Expression for General Two‐Center Coulomb Integrals , 1969 .

[22]  L. Pacios,et al.  Optimized triple‐zeta Gaussian basis sets for use with relativistic effective potentials , 1994 .

[23]  D. Marynick,et al.  Ab initio comparison of the bonding modes of nitrate and bicarbonate in model carbonic anhydrase systems , 1993 .

[24]  D. Marynick,et al.  Systematic errors in the total energy of molecular wave functions calculated within the PRDDO approximations , 1985 .

[25]  F. U. Axe,et al.  Chemical origins of substituent effects in alkylpentacarbonylmanganese(I) group migration reactions , 1988 .

[26]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[27]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[28]  Inga Fischer-Hjalmars,et al.  Deduction of the Zero Differential Overlap Approximation from an Orthogonal Atomic Orbital Basis , 1965 .

[29]  B. Pittel,et al.  Accuracy and limitations of the pseudopotential method , 1974 .

[30]  F. U. Axe,et al.  Molecular orbital study of methyl migration in methylpentacarbonylmanganese(I) , 1987 .

[31]  R. Mcweeny,et al.  Valence-electron-only calculations of electronic structure , 1973 .

[32]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[33]  R. Dixon,et al.  A general pseudopotential model for molecules with many valence electrons , 1975 .

[34]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[35]  P. Durand,et al.  Non-empirical pseudopotentials for molecular calculations , 1977 .

[36]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[37]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[38]  P. A. Christiansen,et al.  IMPROVED Ab Initio EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS , 1979 .

[39]  Peter M. W. Gill,et al.  The prism algorithm for two-electron integrals , 1991 .

[40]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[41]  W. Lipscomb,et al.  Approximations to self-consistent field molecular wavefunctions. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[42]  L. Seijo,et al.  The ab initio model potential method: Third-series transition metal elements , 1990 .

[43]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[44]  Paul Baybutt,et al.  Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons , 1976 .

[45]  Speed and accuracy in molecular orbital calculations. A comparison of CNDO/2, INDO, PRDDO, STO-3G, and other methods, including AAMOM, VRDDO, and ESE MO , 1978 .

[46]  S. Huzinaga,et al.  The use of model potentials in molecular calculations. II , 1982 .

[47]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[48]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[49]  B. C. Carlson,et al.  Orthogonalization Procedures and the Localization of Wannier Functions , 1957 .

[50]  S. Huzinaga,et al.  Atomic and molecular calculations with the model potential method. I , 1975 .

[51]  Jonathan S. Lindsey,et al.  A molecular photonic wire , 1994 .

[52]  W. Lipscomb,et al.  Extension of the method of partial retention of diatomic differential overlap to second row atoms and transition metals. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Stevens,et al.  Geometry Optimization in the Computation of Barriers to Internal Rotation , 1970 .