Classical Dual-Feasible Functions

Dual-feasible functions (DFF) have been used to improve the resolution of different combinatorial optimization problems with knapsack inequalities, including cutting and packing, scheduling and network routing problems. They were used mainly to compute algorithmic lower bounds, but also to generate valid inequalities for integer programs.

[1]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[2]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[3]  Cláudio Alves,et al.  Theoretical investigations on maximal dual feasible functions , 2010, Oper. Res. Lett..

[4]  Frits C. R. Spieksma,et al.  A branch-and-bound algorithm for the two-dimensional vector packing problem , 1994, Comput. Oper. Res..

[5]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[6]  François Clautiaux New collaborative approaches for bin-packing problems , 2010 .

[7]  Cláudio Alves,et al.  A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..

[8]  José M. Valério de Carvalho A Note on Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problems , 2002, Comput. Optim. Appl..

[9]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[10]  El-Ghazali Talbi,et al.  New lower bounds for bin packing problems with conflicts , 2010, Eur. J. Oper. Res..

[11]  Antoine Jouglet,et al.  A new lower bound for the non-oriented two-dimensional bin-packing problem , 2007, Oper. Res. Lett..

[12]  Volker Kaibel,et al.  Integer Programming and Combinatorial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10, 2005, Proceedings , 2005, IPCO.

[13]  Andrea Lodi,et al.  Strengthening Chvátal-Gomory cuts and Gomory fractional cuts , 2002, Oper. Res. Lett..

[14]  Cláudio Alves,et al.  Cutting and packing : problems, models and exact algorithms , 2005 .

[15]  Cláudio Alves,et al.  Computing Valid Inequalities for General Integer Programs using an Extension of Maximal Dual Feasible Functions to Negative Arguments , 2012, ICORES.

[16]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[17]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[19]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[20]  Cláudio Alves,et al.  On the Properties of General Dual-Feasible Functions , 2014, ICCSA.

[21]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[22]  Sándor P. Fekete,et al.  A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems , 2004, Math. Methods Oper. Res..

[23]  Jacques Carlier,et al.  Computing redundant resources for the resource constrained project scheduling problem , 2007, Eur. J. Oper. Res..

[24]  Jacques Carlier,et al.  New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation , 2007, Comput. Oper. Res..

[25]  J. M. Valério de Carvalho,et al.  On the extremality of maximal dual feasible functions , 2012, Oper. Res. Lett..

[26]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[27]  Sándor P. Fekete,et al.  New classes of fast lower bounds for bin packing problems , 2001, Math. Program..

[28]  Cláudio Alves,et al.  Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem , 2014, Eur. J. Oper. Res..

[29]  Sanjeeb Dash,et al.  Valid inequalities based on simple mixed-integer sets , 2006, Math. Program..

[30]  W. R. Pulleyblank,et al.  Polyhedral Combinatorics , 1989, ISMP.

[31]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[32]  George S. Lueker,et al.  Bin packing with items uniformly distributed over intervals [a,b] , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[33]  Marco A. Boschetti,et al.  The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.

[34]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[35]  François Vanderbeck,et al.  Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..

[36]  Cláudio Alves,et al.  Constructing general dual-feasible functions , 2015, Oper. Res. Lett..

[37]  Alberto Caprara,et al.  Bidimensional Packing by Bilinear Programming , 2005, IPCO.

[38]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[39]  Claude-Alain Burdet,et al.  A Subadditive Approach to Solve Linear Integer Programs , 1977 .