Radiosynthesis and preliminary evaluation of 5-[123/125I]iodo-3-(2(S)-azetidinylmethoxy)pyridine: a radioligand for nicotinic acetylcholine receptors.

[1]  E. London,et al.  Synthesis and evaluation of N-[11C]methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. , 1998, Journal of medicinal chemistry.

[2]  E. London,et al.  6-[18F]Fluoro-A-85380: an in vivo tracer for the nicotinic acetylcholine receptor. , 1998, Nuclear medicine and biology.

[3]  E. London,et al.  2-, 5-, and 6-Halo-3-(2(S)-azetidinylmethoxy)pyridines: synthesis, affinity for nicotinic acetylcholine receptors, and molecular modeling. , 1998, Journal of medicinal chemistry.

[4]  E. London,et al.  In vivo studies with [125I]5‐I‐A‐85380, a nicotinic acetylcholine receptor radioligand , 1998, Neuroreport.

[5]  R. Dannals,et al.  5-[I-125/123]lodo-3(2(S)-azetidinylmethoxy)pyridine, a radioiodinated analog of A-85380 for in vivo studies of central nicotinic acetylcholine receptors. , 1998, Life sciences.

[6]  John L. Musachio,et al.  Synthesis of a radiotracer for studying nicotinic acetylcholine receptors: 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]A-85380) , 1998 .

[7]  D. Donnelly-roberts,et al.  Identification and initial structure-activity relationships of (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594), a potent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. , 1998, Journal of medicinal chemistry.

[8]  D. Donnelly-roberts,et al.  Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. , 1998, Science.

[9]  J S Fowler,et al.  Fluoro-norchloroepibatidine: preclinical assessment of acute toxicity. , 1997, Nuclear medicine and biology.

[10]  E. London,et al.  Imaging nicotinic acetylcholine receptors with fluorine-18-FPH, an epibatidine analog. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  E. London,et al.  [125/123I]IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors , 1997, Synapse.

[12]  A. Mukhin,et al.  Two affinity states of N-methyl-D-aspartate recognition sites: modulation by cations. , 1997, The Journal of pharmacology and experimental therapeutics.

[13]  E. London,et al.  Fluorine-18-FPH for PET imaging of nicotinic acetylcholine receptors. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  E. London,et al.  [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[15]  N. Volkow,et al.  Mapping nicotinic acetylcholine receptors with PET , 1996, Synapse.

[16]  E. London,et al.  Synthesis of a radiotracer for studying nicotinic acetylcholine receptors : (+/−)-exo-2-(2-[18F]fluoro-5-pyridyl)-7-azabicyclo[2.2.1]heptane , 1996 .

[17]  D. Donnelly-roberts,et al.  Novel 3-Pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. , 1996, Journal of medicinal chemistry.

[18]  K. Kellar,et al.  Characterization of (+/-)(-)[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. , 1995, Molecular pharmacology.

[19]  E. Levin,et al.  Acute and Chronic Nicotinic Interactions with Dopamine Systems and Working Memory Performance a , 1995, Annals of the New York Academy of Sciences.

[20]  S. Arneric,et al.  Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. , 1995, Life sciences.

[21]  L. Pannell,et al.  Epibatidine: a novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an ecuadoran poison frog , 1992 .

[22]  E. Irle,et al.  Basal forebrain—lesioned monkeys are severely impaired in tasks of association and recognition memory , 1987, Annals of Neurology.

[23]  J. Coyle,et al.  Nicotinic acetylcholine binding sites in Alzheimer's disease , 1986, Brain Research.

[24]  P. Clarke,et al.  Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  J P Changeux,et al.  Acetylcholine receptor: an allosteric protein. , 1984, Science.

[26]  R. Bartus,et al.  Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat , 1983, Pharmacology Biochemistry and Behavior.

[27]  E. London,et al.  Synthesis of a radioiodinated analog of epibatidine : (±)-exo-2-(2-iodo-5-pyridyl)-7-azabicyclo[2.2.1]heptane for in vitro and in vivo studies of nicotinic acetylcholine receptors , 1997 .

[28]  E. London,et al.  In vivo labeling of nicotinic cholinergic receptors in brain with [3H]cytisine. , 1994, Life sciences.

[29]  P. Sargent,et al.  The diversity of neuronal nicotinic acetylcholine receptors. , 1993, Annual review of neuroscience.

[30]  S. Rogers,et al.  A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. , 1992, Molecular pharmacology.

[31]  K. Kellar,et al.  [3H]cytisine binding to nicotinic cholinergic receptors in brain. , 1991, Molecular pharmacology.

[32]  J E Henningfield,et al.  Dose-related actions of nicotine on behavior and physiology: review and implications for replacement therapy for nicotine dependence. , 1989, Journal of substance abuse.

[33]  G. Sedvall,et al.  Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. , 1989, Progress in brain research.

[34]  D. Wong,et al.  In vivo specific binding of [3H]1-nicotine in the mouse brain. , 1989, Life sciences.

[35]  W. Greenough,et al.  A stereotaxic atlas of the albino mouse forebrain. , 1980 .