Locating Objects in the Plane Using Global Optimization Techniques

We address the problem of locating objects in the plane such as segments, arcs of circumferences, arbitrary convex sets, their complements or their boundaries. Given a set of points, we seek the rotation and translation for such an object optimizing a very general performance measure, which includes as a particular case the classical objectives in semi-obnoxious facility location. In general, the above-mentioned model yields a global optimization problem, whose resolution is dealt with using difference of convex (DC) techniques such as outer approximation or branch and bound.

[1]  Prosenjit Bose,et al.  Computing Constrained Minimum-Width Annuli of Point Sets , 1997, WADS.

[2]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[3]  Jack Brimberg,et al.  Erratum to "Locating a minisum circle in the plane" [Discrete Appl. Math. 157 (5) (2009) 901-912] , 2010, Discret. Appl. Math..

[4]  Michael T. Goodrich Efficient piecewise-linear function approximation using the uniform metric , 1995, Discret. Comput. Geom..

[5]  Hiroshi Imai,et al.  Orthogonal Weighted Linear L1 and L∞ Approximation and Applications , 1993, Discret. Appl. Math..

[6]  Le Thi Hoai An,et al.  Large-Scale Molecular Optimization from Distance Matrices by a D.C. Optimization Approach , 2003, SIAM J. Optim..

[7]  Ross D. MacKinnon,et al.  A New Approach to Network Generation and Map Representation: The Linear Case of the Location‐Allocation Problem* , 2010 .

[8]  Vedat Verter,et al.  Hazardous Materials Logistics , 1995 .

[9]  Emilio Carrizosa,et al.  A D.C. biobjective location model , 2002, J. Glob. Optim..

[10]  Friedrich L. Bauer Syntaktische Struktur formaler und natürlicher Sprachen , 2006, Computing.

[11]  Pankaj K. Agarwal,et al.  A (1+)-approximation algorithm for 2-line-center , 2003, Comput. Geom..

[12]  Micha Sharir,et al.  A near-linear algorithm for the planar segment-center problem , 1994, SODA '94.

[13]  Hoang Tuy,et al.  Canonical DC programming problem: Outer approximation methods revisited , 1995, Oper. Res. Lett..

[14]  Theodore J. Rivlin Approximation by circles , 2005, Computing.

[15]  N. Megiddo,et al.  Finding Least-Distances Lines , 1983 .

[16]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[17]  Herbert Edelsbrunner Finding Transversals for Sets of Simple Geometric Figures , 1985, Theor. Comput. Sci..

[18]  H. Tuy Convex analysis and global optimization , 1998 .

[19]  Faiz A. Al-Khayyal,et al.  A D.C. optimization method for single facility location problems , 1995, J. Glob. Optim..

[20]  Sencer Yeralan,et al.  The minimax center estimation problem for automated roundness inspection , 1989 .

[21]  Jack Brimberg,et al.  Linear Facility Location in Three Dimensions - Models and Solution Methods , 2002, Oper. Res..

[22]  B. Jaumard,et al.  WEBER'S PROBLEM WITH ATTRACTION AND REPULSION , 1991 .

[23]  H. M. Wagner Linear Programming Techniques for Regression Analysis , 1959 .

[24]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[25]  S. Louis Hakimi,et al.  Fitting polygonal functions to a set of points in the plane , 1991, CVGIP Graph. Model. Image Process..

[26]  Pankaj K. Agarwal,et al.  Approximation Algorithms for a k-Line Center , 2005, Algorithmica.

[27]  W. S. Chan,et al.  Approximation of Polygonal Curves with Minimum Number of Line Segments or Minimum error , 1996, Int. J. Comput. Geom. Appl..

[28]  Godfried T. Toussaint,et al.  Linear Approximation of Simple Objects , 1994, Comput. Geom..

[29]  Helmuth Späth Orthogonal least squares fitting by conic sections , 1997 .

[30]  José Miguel Díaz-Báñez,et al.  Continuous location of dimensional structures , 2004, Eur. J. Oper. Res..

[31]  Jack Brimberg,et al.  Locating a Circle on the Plane Using the Minimax Criterion , 2006 .

[32]  Jack Snoeyink,et al.  Fitting a Set of Points by a Circle , 1998, Discret. Comput. Geom..

[33]  RICCARDO CAMBINI,et al.  Decomposition Methods for Solving Nonconvex Quadratic Programs via Branch and Bound* , 2005, J. Glob. Optim..

[34]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[35]  D. Zwick,et al.  Applications of orthogonal distance regression in metrology , 1997 .

[36]  Emilio Carrizosa,et al.  Continuous location problems and Big Triangle Small Triangle: constructing better bounds , 2009, J. Glob. Optim..

[37]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Emilio Carrizosa,et al.  Optimization of the Norm of a Vector-Valued DC Function and Applications , 2000 .

[39]  R. Horst,et al.  DC Programming: Overview , 1999 .

[40]  Helmuth Späth Least-squares fitting by circles , 2005, Computing.

[41]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[42]  Yves Nievergelt,et al.  A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres , 2002, Numerische Mathematik.

[43]  Frank Plastria,et al.  Location of Semi-Obnoxious Facilities , 2003 .

[44]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[45]  H. Martini,et al.  Hyperplane Approximation and Related Topics , 1993 .

[46]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[47]  Sencer Yeralan,et al.  Computerized roundness inspection , 1988 .

[48]  D. T. Lee,et al.  Geometric complexity of some location problems , 1986, Algorithmica.

[49]  Pierre Hansen,et al.  Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming , 1992, Oper. Res..

[50]  T. B. Boffey,et al.  Optimal location of routes for vehicles transporting hazardous materials , 1995 .

[51]  Emilio Carrizosa,et al.  On Covering Methods for D.C. Optimization , 2000, J. Glob. Optim..

[52]  Micha Sharir,et al.  Planar geometric location problems , 2005, Algorithmica.

[53]  James G. Morris,et al.  Linear facility location -- Solving extensions of the basic problem , 1983 .

[54]  Horst Martini,et al.  Median and center hyperplanes in Minkowski spaces--a unified approach , 2001, Discret. Math..

[55]  A. Schöbel Locating lines and hyperplanes : theory and algorithms , 1999 .

[56]  A. Melkman,et al.  On Polygonal Chain Approximation , 1988 .

[57]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[58]  D. T. Lee,et al.  Out-of-Roundness Problem Revisited , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Anita Schöbel,et al.  Solving Restricted Line Location Problems via a Dual Interpretation , 1999, Discret. Appl. Math..

[60]  W. Wong,et al.  On ψ-Learning , 2003 .

[61]  Hiroshi Konno,et al.  Optimization of a Long-Short Portfolio under Nonconvex Transaction Cost , 2005, Comput. Optim. Appl..

[62]  Jack Brimberg,et al.  Locating a minisum circle in the plane , 2009, Discret. Appl. Math..

[63]  D. T. Lee,et al.  1-Segment Center Problems , 1992, INFORMS J. Comput..

[64]  Pierre Hansen,et al.  Global Optimization in Location , 1995 .

[65]  Zvi Drezner,et al.  Location of an Obnoxious Route , 1989 .

[66]  J. A. Mesa,et al.  Location of rectilinear center trajectories , 1998 .

[67]  Sivan Toledo,et al.  Computing a Segment Center for a Planar Point Set , 1993, J. Algorithms.

[68]  Saul I. Gass,et al.  Fitting Circles and Spheres to Coordinate Measuring Machine Data , 1998 .

[69]  James G. Morris,et al.  A Simple Approach to Linear Facility Location , 1980 .

[70]  Hoang Tuy,et al.  D.C. Optimization: Theory, Methods and Algorithms , 1995 .

[71]  Yoshitsugu Yamamoto,et al.  GLOBAL OPTIMIZATION PROBLEM WITH MULTIPLE REVERSE CONVEX CONSTRAINTS AND ITS APPLICATION TO OUT-OF-ROUNDNESS PROBLEM , 1996 .

[72]  James G. Morris,et al.  Fitting hyperplanes by minimizing orthogonal deviations , 1980, Math. Program..

[73]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[74]  José Miguel Díaz-Báñez,et al.  Fitting rectilinear polygonal curves to a set of points in the plane , 2001, Eur. J. Oper. Res..

[75]  Anita Schöbel,et al.  Locating least-distant lines in the plane , 1998, Eur. J. Oper. Res..

[76]  Vladimir Marianov,et al.  Anticoverage Models for Obnoxious Material Transportation , 2002 .

[77]  Zvi Drezner,et al.  On the circle closest to a set of points , 2002, Comput. Oper. Res..

[78]  Zvi Drezner,et al.  A General Global Optimization Approach for Solving Location Problems in the Plane , 2007, J. Glob. Optim..

[79]  Jack Brimberg,et al.  Locating a Circle on a Sphere , 2007, Oper. Res..