Dynamic load balancing in parallel particle methods

Contemporary scientific simulations require vast computing power to solve complex problems in natural and life sciences. High-performance computing (HPC) enables fast execution of scientific simulation codes by parallelizing the computational workload across processing elements (PEs). This is usually done by decomposing the computational domain into smaller subdomains and assigning each subdomain to a PE. The subdomains encapsulate computational elements such as computational meshes or particles. The workload of each PE is defined by the number of operations done using these computational elements. In many scientific simulations, the initial load balance is not preserved during the course of simulation. Outside factors (e.g., congestion in the cluster network) as well as simulation dynamics (e.g., movement of particles in the computational domain) may alter the loads of PEs and may cause load imbalance. In such situations, overloaded PEs require more time to finish their tasks while underloaded PEs remain idle and wait for the overloaded PEs. This protracts simulation runtime and results in redundant energy consumption and wasting resources, which we would like to avoid to the extend possible. To handle these load imbalance situations efficiently, dynamic load balancing (DLB) techniques have been developed. In DLB, one is interested in making fast corrections to the load imbalance. As opposed to static load balancing, DLB tries to avoid a brand new subdomain-to-PE assignment.

[1]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[2]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[3]  C. J. Harris,et al.  Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion , 2001 .

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[6]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[7]  Ivo F. Sbalzarini,et al.  Toward an Object-Oriented Core of the PPM Library , 2010 .

[8]  Fahed Abdallah,et al.  Box particle filtering for nonlinear state estimation using interval analysis , 2008, Autom..

[9]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[10]  Singiresu S. Rao The finite element method in engineering , 1982 .

[11]  Michael Philippsen,et al.  JaMP: an implementation of OpenMP for a Java DSM , 2007, Concurr. Comput. Pract. Exp..

[12]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[13]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[14]  P. Sorger,et al.  Automatic fluorescent tag detection in 3D with super‐resolution: application to the analysis of chromosome movement , 2002, Journal of microscopy.

[15]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[16]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[17]  Zengjian Hu,et al.  On weighted balls-into-bins games , 2005, Theor. Comput. Sci..

[18]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[19]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[20]  Ivo F. Sbalzarini,et al.  Piecewise Constant Sequential Importance Sampling for Fast Particle Filtering , 2013, ArXiv.

[21]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[23]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[24]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[25]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[26]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[27]  N. Kaib,et al.  Planetary system disruption by Galactic perturbations to wide binary stars , 2013, Nature.

[28]  Simon J. Godsill,et al.  Monte Carlo smoothing with application to audio signal enhancement , 2002, IEEE Trans. Signal Process..

[29]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[30]  Harold J. Kushner,et al.  A nonlinear filtering algorithm based on an approximation of the conditional distribution , 2000, IEEE Trans. Autom. Control..

[31]  Paulo R. S. Mendonça,et al.  Model-Based Hand Tracking Using an Unscented Kalman Filter , 2001, BMVC.

[32]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[33]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[34]  Arif Ghafoor,et al.  A semi distributed task allocation strategy for large hypercube supercomputers , 1990, Proceedings SUPERCOMPUTING '90.

[35]  J. Spragins,et al.  A note on the iterative application of Bayes' rule , 1965, IEEE Trans. Inf. Theory.

[36]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[37]  Elisa Francomano,et al.  Corrective meshless particle formulations for time domain Maxwell's equations , 2007 .

[38]  D. Gingras,et al.  Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[39]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[40]  Laxmikant V. Kalé,et al.  Periodic hierarchical load balancing for large supercomputers , 2011, Int. J. High Perform. Comput. Appl..

[41]  Kyle A. Beauchamp,et al.  Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). , 2010, Journal of the American Chemical Society.

[42]  Hedibert F. Lopes,et al.  Particle filters and Bayesian inference in financial econometrics , 2011 .

[43]  Serap Ulusam Seçkiner,et al.  Wind farm layout optimization using particle filtering approach , 2013 .

[44]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[45]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[46]  Chris J. Scheiman,et al.  LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for parallel computation , 1995, SPAA '95.

[47]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[48]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[49]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[50]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[51]  Fahed Abdallah,et al.  An Introduction to Box Particle Filtering [Lecture Notes] , 2013, IEEE Signal Processing Magazine.

[52]  Rob Williams Hardware/software co-design , 2006 .

[53]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[54]  Ivo F. Sbalzarini,et al.  Deconvolving Active Contours for Fluorescence Microscopy Images , 2009, ISVC.

[55]  Kunal Talwar,et al.  Balanced allocations: the weighted case , 2007, STOC '07.

[56]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[57]  Ankur Narang,et al.  Perfectly Balanced Allocation With Estimated Average Using Approximately Constant Retries , 2011, ArXiv.

[58]  V. Chandru,et al.  Optimization Methods for Logical Inference , 1999 .

[59]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[60]  M. Kalos,et al.  Monte Carlo methods , 1986 .

[61]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[62]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[63]  Gomes de Freitas,et al.  Bayesian methods for neural networks , 2000 .

[64]  George Bosilca,et al.  Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.

[65]  Wiro J. Niessen,et al.  Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis , 2008, IEEE Transactions on Medical Imaging.

[66]  Ivo F. Sbalzarini,et al.  Balancing indivisible real-valued loads in arbitrary networks , 2013, ArXiv.

[67]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[68]  Berthold Vöcking,et al.  Balanced allocations: the heavily loaded case , 2000, STOC '00.

[69]  Geoffrey C. Fox,et al.  MPIJAVA: An Object-Oriented JAVA Interface to MPI , 1999, IPPS/SPDP Workshops.

[70]  Jacques E. Boillat,et al.  Load Balancing and Poisson Equation in a Graph , 1990, Concurr. Pract. Exp..

[71]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[72]  Catherine Doz,et al.  A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering , 2007 .

[73]  Francis C. M. Lau,et al.  Nearest-neighbor algorithms for load-balancing in parallel computers , 1995, Concurr. Pract. Exp..

[74]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[75]  Christian Scheideler,et al.  Perfectly Balanced Allocation , 2003, RANDOM-APPROX.

[76]  Yuval Rabani,et al.  Local divergence of Markov chains and the analysis of iterative load-balancing schemes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[77]  Bradford Nichols,et al.  Pthreads programming - a POSIX standard for better multiprocessing , 1996 .

[78]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[79]  Anand D. Sarwate,et al.  Broadcast Gossip Algorithms for Consensus , 2009, IEEE Transactions on Signal Processing.

[80]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[81]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[82]  Aníbal Ollero,et al.  A particle filtering method for wireless sensor network localization with an aerial robot beacon , 2008, 2008 IEEE International Conference on Robotics and Automation.

[83]  Laxmikant V. Kalé,et al.  A distributed dynamic load balancer for iterative applications , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[84]  R. S. Bucy,et al.  Bayes Theorem and Digital Realizations for Non-Linear Filters , 1969 .

[85]  Fahed Abdallah,et al.  Mixture of uniform probability density functions for non linear state estimation using interval analysis , 2010, 2010 13th International Conference on Information Fusion.

[86]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[87]  K. Srinivasan State estimation by orthogonal expansion of probability distributions , 1970 .

[88]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[89]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[90]  David J. C. MacKay,et al.  Choice of Basis for Laplace Approximation , 1998, Machine Learning.

[91]  M. Ibrahim Sezan,et al.  A robust real-time face tracking algorithm , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[92]  Andreas Hegyi,et al.  Freeway traffic estimation within particle filtering framework , 2007, Autom..

[93]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[94]  Fredrik Gustafsson,et al.  Particle Filtering: The Need for Speed , 2010, EURASIP J. Adv. Signal Process..

[95]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[96]  Jean Rouat,et al.  Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering , 2007, Robotics Auton. Syst..

[97]  Y. Peres,et al.  The (1 + β)-choice process and weighted balls-into-bins , 2010, SODA '10.

[98]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[99]  Lars Bretzner,et al.  Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[100]  E. Meijering,et al.  Tracking in molecular bioimaging , 2006, IEEE Signal Processing Magazine.

[101]  S. F.R.,et al.  An Essay towards solving a Problem in the Doctrine of Chances . By the late Rev . Mr . Bayes , communicated by Mr . Price , in a letter to , 1999 .

[102]  Ivo F Sbalzarini,et al.  Modeling and simulation of biological systems from image data , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[103]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[104]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[105]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[106]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[107]  L. Tippett Statistical Tables: For Biological, Agricultural and Medical Research , 1954 .

[108]  S. Aleksic,et al.  Analysis of Power Consumption in Future High-Capacity Network Nodes , 2009, IEEE/OSA Journal of Optical Communications and Networking.

[109]  C. McDiarmid SIMULATED ANNEALING AND BOLTZMANN MACHINES A Stochastic Approach to Combinatorial Optimization and Neural Computing , 1991 .

[110]  Petar M. Djuric,et al.  Particle Filtering of Stochastic Volatility Modeled With Leverage , 2012, IEEE Journal of Selected Topics in Signal Processing.

[111]  Alain Galli,et al.  Filtering in Finance , 2003 .

[112]  D. Lawless,et al.  Factored particle filtering for data fusion and situation assessment in urban environments , 2005, 2005 7th International Conference on Information Fusion.

[113]  Ivo F. Sbalzarini,et al.  Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images , 2010, BMC Bioinformatics.

[114]  Eugen Reichel,et al.  1. A - C , 1909 .

[115]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[116]  Jeffrey M. Squyres,et al.  Towards the availability of Java bindings in open MPI , 2013, EuroMPI.

[117]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[118]  George Cybenko,et al.  Dynamic Load Balancing for Distributed Memory Multiprocessors , 1989, J. Parallel Distributed Comput..

[119]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[120]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[121]  Joel H. Saltz,et al.  Adaptive runtime support for direct simulation Monte Carlo methods on distributed memory architectures , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[122]  P. L’Ecuyer,et al.  Random Number Generation and Quasi-Monte Carlo† , 2015 .

[123]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[124]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[125]  Ingvar Strid,et al.  Parallel particle filters for likelihood evaluation in DSGE models: An assessment , 2006 .

[126]  Ivo F. Sbalzarini,et al.  Balanced offline allocation of weighted balls into bins , 2013, ArXiv.

[127]  Wiro J. Niessen,et al.  Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering , 2008, Medical Image Anal..

[128]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[129]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[130]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[131]  Yahya Slimani,et al.  Task Load Balancing Strategy for Grid Computing , 2007 .

[132]  C. Hoogenraad,et al.  Microtubule plus-end-tracking proteins: mechanisms and functions. , 2005, Current opinion in cell biology.

[133]  Joaquín Míguez,et al.  A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models , 2012, Stat. Comput..

[134]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[135]  Tieniu Tan,et al.  Real time hand tracking by combining particle filtering and mean shift , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[136]  S. Muthukrishnan,et al.  First- and Second-Order Diffusive Methods for Rapid, Coarse, Distributed Load Balancing , 1996, Theory of Computing Systems.

[137]  Rong Chen,et al.  A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.

[138]  Mónica F. Bugallo,et al.  A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics , 2004, EURASIP J. Adv. Signal Process..

[139]  Sudipto Guha,et al.  Fast, small-space algorithms for approximate histogram maintenance , 2002, STOC '02.

[140]  Henrik I. Christensen,et al.  Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features , 2011, 2011 IEEE International Conference on Robotics and Automation.

[141]  Harold W. Sorenson,et al.  Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..

[142]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[143]  Walter H. Kohler,et al.  Models for Dynamic Load Balancing in a Heterogeneous Multiple Processor System , 1979, IEEE Transactions on Computers.

[144]  L. Schares,et al.  Low power and high density optical interconnects for future supercomputers , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[145]  Alexey Cheptsov Promoting Data-Centric Supercomputing to the WWW World: Open MPI's Java Bindings , 2013, 2013 27th International Conference on Advanced Information Networking and Applications Workshops.

[146]  S. Muthukrishnan,et al.  Dynamic Load Balancing by Random Matchings , 1996, J. Comput. Syst. Sci..

[147]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[148]  Ba Tuong Vo,et al.  Random finite sets in Multi-object filtering , 2008 .

[149]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[150]  Sumeetpal S. Singh,et al.  Sequential monte carlo implementation of the phd filter for multi-target tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[151]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[152]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[153]  Ivo F. Sbalzarini,et al.  PPF - A Parallel Particle Filtering Library , 2013, ArXiv.

[154]  Petar M. Djuric,et al.  Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.

[155]  John N. Hooker,et al.  A quantitative approach to logical inference , 1988, Decis. Support Syst..

[156]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[157]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[158]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[159]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[160]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[161]  Andreas Zell,et al.  Localization of mobile robots with omnidirectional vision using Particle Filter and iterative SIFT , 2006, Robotics Auton. Syst..

[162]  Xiaokang Yang,et al.  Camshift Guided Particle Filter for Visual Tracking , 2007, SiPS.

[163]  Ivo F. Sbalzarini,et al.  An adaptive distributed resampling algorithm with non-proportional allocation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[164]  Mark Kambites,et al.  JOMP—an OpenMP-like interface for Java , 2000, JAVA '00.

[165]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[166]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[167]  Simon Maskell,et al.  A Single Instruction Multiple Data Particle Filter , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[168]  Joaquín Míguez,et al.  Analysis of parallelizable resampling algorithms for particle filtering , 2007, Signal Process..

[169]  Eli Upfal,et al.  Balanced Allocations , 1999, SIAM J. Comput..

[170]  Thomas Sauerwald,et al.  Near-perfect load balancing by randomized rounding , 2009, STOC '09.

[171]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[172]  Thomas Sauerwald,et al.  Tight Bounds for Randomized Load Balancing on Arbitrary Network Topologies , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[173]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[174]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[175]  Karl Rohr,et al.  Identifying Virus-Cell Fusion in Two-Channel Fluorescence Microscopy Image Sequences Based on a Layered Probabilistic Approach , 2012, IEEE Transactions on Medical Imaging.

[176]  Jeff Harrison,et al.  Applied Bayesian Forecasting and Time Series Analysis , 1994 .

[177]  Samuel Kotz,et al.  Urn Models and Their Application: An Approach to Modern Discrete Probability Theory , 1978 .

[178]  Ivo F. Sbalzarini,et al.  MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis , 2013, BMC Bioinformatics.

[179]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[180]  David W. Capson,et al.  A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter , 2012, IEEE Transactions on Visualization and Computer Graphics.

[181]  Ivo F. Sbalzarini,et al.  Abstractions and Middleware for Petascale Computing and Beyond , 2010, Int. J. Distributed Syst. Technol..

[182]  Laxmikant V. Kalé,et al.  Work stealing and persistence-based load balancers for iterative overdecomposed applications , 2012, HPDC '12.

[183]  S. James Press,et al.  Subjective and objective Bayesian statistics : principles, models, and applications , 2003 .

[184]  James V. Candy,et al.  Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods , 2009 .

[185]  J. E. Handschin Monte Carlo techniques for prediction and filtering of non-linear stochastic processes , 1970 .

[186]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[187]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[188]  I. Sbalzarini,et al.  Distributed dynamic load balancing in massively parallel scientific numerical simulations , 2014 .

[189]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[190]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[191]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[192]  Namrata Vaswani,et al.  Tracking Deforming Objects Using Particle Filtering for Geometric Active Contours , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[193]  Sven Zenker Parallel particle filters for online identification of mechanistic mathematical models of physiology from monitoring data: performance and real-time scalability in simulation scenarios , 2010, Journal of Clinical Monitoring and Computing.

[194]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[195]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[196]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[197]  Erik Meijering,et al.  Methods for cell and particle tracking. , 2012, Methods in enzymology.

[198]  G.M. Siouris,et al.  Tracking an incoming ballistic missile using an extended interval Kalman filter , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[199]  Lawrence Mitchell,et al.  Achieving Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation , 2013, ISC.

[200]  Kevin Skadron,et al.  Parallelization of particle filter algorithms , 2010, ISCA'10.

[201]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[202]  Michael Mitzenmacher,et al.  The Power of Two Choices in Randomized Load Balancing , 2001, IEEE Trans. Parallel Distributed Syst..

[203]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[204]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .