Neptunium thiophosphate chemistry: intermediate behavior between uranium and plutonium.

Black crystals of Np(PS(4)), Np(P(2)S(6))(2), K(11)Np(7)(PS(4))(13), and Rb(11)Np(7)(PS(4))(13) have been synthesized by the reactions of Np, P(2)S(5), and S at 1173 and 973 K; Np, K(2)S, P, and S at 773 K; and Np, Rb(2)S(3), P, and S at 823 K, respectively. The structures of these compounds have been characterized by single-crystal X-ray diffraction methods. Np(PS(4)) adopts a three-dimensional structure with Np atoms coordinated to eight S atoms from four bidentate PS(4)(3-) ligands in a distorted square antiprismatic arrangement. Np(PS(4)) is isostructural to Ln(PS(4)) (Ln = La-Nd, Sm, Gd-Er). The structure of Np(P(2)S(6))(2) is constructed from three interpenetrating diamond-type frameworks with Np atoms coordinated to eight S atoms from four bidentate P(2)S(6)(2-) ligands in a distorted square antiprismatic geometry. The centrosymmetric P(2)S(6)(2-) anion comprises two PS(2) groups connected by two bridging S centers. Np(P(2)S(6))(2) is isostructural to U(P(2)S(6))(2). A(11)Np(7)(PS(4))(13) (A = K, Rb) adopts a three-dimensional channel structure built from interlocking [Np(7)(PS(4))(13)](11-)-screw helices with A cations residing in the channels. The structure of A(11)Np(7)(PS(4))(13) includes four crystallographically independent Np atoms. Three are connected to eight S atoms in bicapped trigonal prisms. The other Np atom is connected to nine S atoms in a tricapped trigonal prism. A(11)Np(7)(PS(4))(13) is isostructural to A(11)U(7)(PS(4))(13). From Np-S bond distances and charge-balance, we infer that Np is trivalent in Np(PS(4)) and tetravalent in Np(P(2)S(6))(2) and A(11)Np(7)(PS(4))(13). Np exhibits a behavior intermediate between U and Pu in its thiophosphate chemistry.

[1]  J. Ibers,et al.  Syntheses, structures, and magnetic properties of Np3S5 and Np3Se5. , 2011, Inorganic Chemistry.

[2]  J. Ibers,et al.  Single-crystal structures of uranium and neptunium oxychalcogenides AnOQ (An=U, Np; Q=S, Se) , 2010 .

[3]  Shuao Wang,et al.  Neptunium diverges sharply from uranium and plutonium in crystalline borate matrixes: insights into the complex behavior of the early actinides relevant to nuclear waste storage. , 2010, Angewandte Chemie.

[4]  G. M. Stocks,et al.  Electronic structure and ionicity of actinide oxides from first principles , 2009, 0908.1806.

[5]  J. Ibers,et al.  Quaternary neptunium compounds: syntheses and characterization of KCuNpS(3), RbCuNpS(3), CsCuNpS(3), KAgNpS(3), and CsAgNpS(3). , 2009, Inorganic chemistry.

[6]  J. Ibers,et al.  Neptunium(III) copper(I) diselenide , 2009, Acta crystallographica. Section E, Structure reports online.

[7]  R. Konings,et al.  The High-temperature Behaviour of PuPO4 Monazite and Some Other Related Compounds , 2008 .

[8]  J. Fuger,et al.  Thermodynamic Properties of Actinides and Actinide Compounds , 2008 .

[9]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[10]  D. Bregiroux,et al.  Solid-state synthesis of monazite-type compounds containing tetravalent elements. , 2007, Inorganic chemistry.

[11]  R. Denning Electronic structure and bonding in actinyl ions and their analogs. , 2007, The journal of physical chemistry. A.

[12]  A. Orlova Chemistry and structural chemistry of anhydrous tri- and tetravalent actinide orthophosphates , 2007 .

[13]  T. Schleid,et al.  Die Lanthanid(III)-ortho-Thiophosphate(V) vomTypM[PS4] (M= La–Nd, Sm, Gd–Er): Synthese, Kristallstruktur und 31P-NMR-Untersuchungen / The M[PS4]-Type Lanthanide(III) ortho-Thiophosphates(V) (M = La–Nd, Sm, Gd–Er): Synthesis, Crystal Structure, and 31P NMR Investigations , 2006 .

[14]  P. Feng,et al.  Synthesis and characterization of two quaternary thorium chalcophosphates: Cs4Th2P6S18 and Rb7Th2P6Se21. , 2005, Inorganic chemistry.

[15]  A. Orlova,et al.  Orthophosphates of Tetravalent Ce, Th, U, Np, and Pu with the Monazite Structure , 2004 .

[16]  M. Chiang,et al.  A unique coordination environment for an ion: EXAFS studies and bond valence model approach of the encapsulated cation in the Preyssler anion. , 2004, Dalton transactions.

[17]  S. Skanthakumar,et al.  Hydrothermal synthesis, structure, and magnetic properties of the mixed-valent Np(IV)/Np(V) Selenite Np(NpO2)2(SeO3)3. , 2004, Inorganic chemistry.

[18]  W. Tremel,et al.  Interlocking inorganic screw helices: synthesis, structure, and magnetism of the novel framework uranium orthothiophoshates A11U7(PS4)13 (A = K, Rb). , 2002, Chemistry.

[19]  P. Dorhout,et al.  Synthesis and structural characterization of the first quaternary plutonium thiophosphates: K(3)Pu(PS(4))(2) and APuP(2)S(7) (A = K, Rb, Cs). , 2002, Journal of the American Chemical Society.

[20]  P. Dorhout,et al.  Synthesis, structure, and properties of Cs(4)Th(4)P(4)Se(26): a quaternary thorium selenophosphate containing the (P(2)Se(9))(6-) anion. , 2001, Inorganic chemistry.

[21]  Sung‐Jin Kim,et al.  Structure Modification on Quaternary Rare Earth Thiophosphates: NaYbP2S6, NaSmP2S6, and KSmP2S7 , 2001 .

[22]  P. Dorhout,et al.  Thiophosphate phase diagrams developed in conjunction with the synthesis of the new compounds KLaP(2)S(6), K(2)La(P(2)S(6))(1/2)(PS(4)), K(3)La(PS(4))(2), K(4)La(0.67)(PS(4))(2), K(9-)(x)La(1+x/3)(Ps(4))(4) (x = 0.5), K(4)Eu(PS(4))(2), and KEuPS(4). , 2001, Inorganic chemistry.

[23]  P. Dorhout,et al.  Synthesis and characterization of six new quaternary actinide thiophosphate compounds: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6)(,) K(10)Th(3)(P(2)S(7))(4)(PS(4))(2), and A(5)An(PS(4))(3), (A = K, Rb, Cs; An = U, Th). , 2001, Inorganic chemistry.

[24]  B. Bursten,et al.  The coordination geometry of Np(VII) in alkaline solution. , 2001, Journal of the American Chemical Society.

[25]  W. Tremel,et al.  "Supramolecular" Solid-State Chemistry: Interpenetrating Diamond-Type Frameworks of U4+ Ions Linked by S,S'-Bidentate P2 S62- Molecular Rods in UP4 S12. , 2001, Angewandte Chemie.

[26]  B. Bursten,et al.  Neptunium redox speciation , 2001 .

[27]  P. Dorhout,et al.  Synthesis and structural characterization of quaternary thorium selenophosphates: A2ThP3Se9 (A = K, Rb) and Cs4Th2P5Se17. , 2000, Inorganic Chemistry.

[28]  Allen,et al.  Reaction of plutonium dioxide with water: formation and properties of PuO(2+x) , 2000, Science.

[29]  J. Ibers,et al.  Ternary and Quaternary Uranium and Thorium Chalcogenides , 1998 .

[30]  W. J. Weber,et al.  Radiation damage in zircon and monazite , 1998 .

[31]  G. Gauthier,et al.  K3CeP2S8: A New Cerium Thiophosphate with One-Dimensional Anionic Chains , 1998 .

[32]  M. Kanatzidis,et al.  Stabilization of U5+ in Rb4U4P4Se26. An actinide compound with a mixed selenophosphate/polyselenide framework and ion-exchange properties , 1997 .

[33]  S. Conradson,et al.  The synthesis and characterization of the superconductor-related compound Pb2Sr2AmCu3O8 , 1996 .

[34]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[35]  H. Yun,et al.  Synthesis and Crystal Structure of $UP_{2}S_{6}$ , 1993 .

[36]  F. Ménil,et al.  The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials , 1992 .

[37]  J. Ibers,et al.  A new low-temperature route to metal polychalcogenides: solid-state synthesis of potassium titanium sulfide (K4Ti3S14), a novel one-dimensional compound , 1987 .

[38]  E. Parthé,et al.  STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .

[39]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[40]  L. Boatner,et al.  Structural refinements of praseodymium and neodymium orthophosphate , 1985 .

[41]  M. Pagès,et al.  237 Np Mössbauer isomer shifts in neptunium chalcogenides , 1984 .

[42]  A. Simon,et al.  Darstellung und Kristallstruktur von ZrP2S6 und ThP2S6 , 1982 .

[43]  M. Pagès,et al.  Crystallographic and magnetic studies of a new neptunium selenide: Np2Se5 , 1982 .

[44]  G. Mccarthy,et al.  Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal , 1978 .

[45]  B. O. Loopstra The structure of -U3O8 , 1970 .