Ligand binding and micro-switches in 7TM receptor structures.

[1]  Viktor Hornak,et al.  Helix Movement is Coupled to Displacement of the Second Extracellular Loop in Rhodopsin Activation , 2009, Nature Structural &Molecular Biology.

[2]  Raymond C Stevens,et al.  Discovery of new GPCR biology: one receptor structure at a time. , 2009, Structure.

[3]  W. Weis,et al.  Structural insights into G-protein-coupled receptor activation. , 2008, Current opinion in structural biology.

[4]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[5]  Michael F. Brown,et al.  Two protonation switches control rhodopsin activation in membranes , 2008, Proceedings of the National Academy of Sciences.

[6]  Structural biology: A moving story of receptors , 2008, Nature.

[7]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[8]  T. Schwartz,et al.  A second disulfide bridge from the N-terminal domain to extracellular loop 2 dampens receptor activity in GPR39. , 2008, Biochemistry.

[9]  Thomas Huber,et al.  Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. , 2008, Journal of molecular biology.

[10]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[11]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[12]  Tetsuya Hori,et al.  Crystal Structure of Squid Rhodopsin with Intracellularly Extended Cytoplasmic Region , 2008, Journal of Biological Chemistry.

[13]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[14]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[15]  G. Schertler Signal transduction: The rhodopsin story continued , 2008, Nature.

[16]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[17]  B. Kobilka,et al.  New G-protein-coupled receptor crystal structures: insights and limitations. , 2008, Trends in pharmacological sciences.

[18]  W. Hubbell,et al.  Sequence of late molecular events in the activation of rhodopsin , 2007, Proceedings of the National Academy of Sciences.

[19]  T. Kenakin Functional Selectivity through Protean and Biased Agonism: Who Steers the Ship? , 2007, Molecular Pharmacology.

[20]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[21]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[22]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[23]  Manfred Burghammer,et al.  Crystal structure of a thermally stable rhodopsin mutant. , 2007, Journal of molecular biology.

[24]  T. Schwartz,et al.  Identification of an Efficacy Switch Region in the Ghrelin Receptor Responsible for Interchange between Agonism and Inverse Agonism* , 2007, Journal of Biological Chemistry.

[25]  Valérie Capra,et al.  The Highly Conserved DRY Motif of Class A G Protein-Coupled Receptors: Beyond the Ground State , 2007, Molecular Pharmacology.

[26]  T. Schwartz,et al.  Activation of the CXCR3 Chemokine Receptor through Anchoring of a Small Molecule Chelator Ligand between TM-III, -IV, and -VI , 2007, Molecular Pharmacology.

[27]  Richard R Neubig,et al.  Missing Links: Mechanisms of Protean Agonism , 2007, Molecular Pharmacology.

[28]  Leonardo Pardo,et al.  The Role of Internal Water Molecules in the Structure and Function of the Rhodopsin Family of G Protein‐Coupled Receptors , 2007, Chembiochem : a European journal of chemical biology.

[29]  Krzysztof Palczewski,et al.  Crystal structure of a photoactivated deprotonated intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[30]  Xavier Deupi,et al.  Coupling ligand structure to specific conformational switches in the β2-adrenoceptor , 2006, Nature chemical biology.

[31]  T. Schwartz,et al.  Metal Ion Site Engineering Indicates a Global Toggle Switch Model for Seven-transmembrane Receptor Activation* , 2006, Journal of Biological Chemistry.

[32]  Viktor Hornak,et al.  Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. , 2006, Journal of molecular biology.

[33]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[34]  G. Schertler Structure of rhodopsin and the metarhodopsin I photointermediate. , 2005, Current opinion in structural biology.

[35]  L. Pardo,et al.  Linking agonist binding to histamine H1 receptor activation , 2005, Nature chemical biology.

[36]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[37]  Leonardo Pardo,et al.  An Activation Switch in the Rhodopsin Family of G Protein-coupled Receptors , 2005, Journal of Biological Chemistry.

[38]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[39]  P. Molinari,et al.  "Induced-fit" mechanism for catecholamine binding to the beta2-adrenergic receptor. , 2004, Molecular pharmacology.

[40]  B. Kobilka Agonist binding: a multistep process. , 2004, Molecular pharmacology.

[41]  T. Kenakin Principles: receptor theory in pharmacology. , 2004, Trends in pharmacological sciences.

[42]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[43]  Krzysztof Palczewski,et al.  Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. , 2003, Biochemistry.

[44]  Krzysztof Palczewski,et al.  Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H Gobind Khorana,et al.  Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. , 2003, Advances in protein chemistry.

[46]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[47]  Harel Weinstein,et al.  Conserved Helix 7 Tyrosine Acts as a Multistate Conformational Switch in the 5HT2C Receptor , 2002, The Journal of Biological Chemistry.

[48]  Molecular Structure and Function of 7TM G- Protein- Coupled Receptors , 2002 .

[49]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[51]  T. Sakmar,et al.  Rhodopsin: insights from recent structural studies. , 2002, Annual review of biophysics and biomolecular structure.

[52]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[53]  Robert P. Millar,et al.  Functional Microdomains in G-protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[54]  H Weinstein,et al.  Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor , 1997, The EMBO journal.

[55]  J. Foreman,et al.  Textbook of Receptor Pharmacology , 2011 .

[56]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[57]  A. Scheer,et al.  Constitutively active mutants of the alpha 1B‐adrenergic receptor: role of highly conserved polar amino acids in receptor activation. , 1996, The EMBO journal.

[58]  T. Schwartz,et al.  Is there a 'lock' for all agonist 'keys' in 7TM receptors? , 1996, Trends in pharmacological sciences.

[59]  M. Caron,et al.  The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. , 1995, Biochemistry.

[60]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[61]  Stuart C. Sealfon,et al.  Receptor molecular biology , 1995 .

[62]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[63]  T. Schwartz,et al.  Locating ligand-binding sites in 7TM receptors by protein engineering. , 1994, Current opinion in biotechnology.

[64]  K. Hofmann,et al.  Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[66]  R. Lefkowitz,et al.  A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. , 1980, The Journal of biological chemistry.

[67]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.