Paper supercapacitors by a solvent-free drawing method†

We designed and fabricated supercapacitors by directly drawing graphite on cellulose paper. The supercapacitors show stable long cycling performance and a high areal capacitance of 2.3 mF cm−2, which is much higher than the literature reported values. This solvent-free deposition technique represents a low cost, highly scalable and versatile fabrication method for integrated paper-based energy devices.

[1]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[2]  J. Jang,et al.  Micropatterning of Graphene Sheets by Inkjet Printing and Its Wideband Dipole‐Antenna Application , 2011, Advanced materials.

[3]  Haoshen Zhou,et al.  To draw an air electrode of a Li–air battery by pencil , 2011 .

[4]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[5]  Dan Li,et al.  Paper surfaces functionalized by nanoparticles. , 2011, Advances in colloid and interface science.

[6]  Richard Van Noorden Chemistry: The trials of new carbon , 2011, Nature.

[7]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[8]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[9]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[10]  Chongwu Zhou,et al.  Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique , 2010 .

[11]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[12]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[13]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[14]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[15]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[16]  Chia-Chun Chen,et al.  Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance , 2010 .

[17]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[18]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[19]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[20]  Yi Cui,et al.  Carbon nanofiber supercapacitors with large areal capacitances , 2009 .

[21]  Tetsuya Osaka,et al.  Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate , 2009 .

[22]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[23]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[24]  François M. Peeters,et al.  Water on graphene: Hydrophobicity and dipole moment using density functional theory , 2009 .

[25]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[26]  M. Pasquali,et al.  Continuous and scalable fabrication of transparent conducting carbon nanotube films. , 2009, ACS nano.

[27]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[28]  Jun Chen,et al.  Carbon nanotube network modified carbon fibre paper for Li-ion batteries , 2009 .

[29]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[30]  Yongyao Xia,et al.  A competitive candidate material for aqueous supercapacitors: High surface-area graphite , 2008 .

[31]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[32]  P. Pickup,et al.  Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities , 2008 .

[33]  A. Govindaraj,et al.  Graphene-based electrochemical supercapacitors , 2008 .

[34]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[35]  T. Abe,et al.  Mechanism for Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulfuric Acid Solution , 2007 .

[36]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[37]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[38]  G. Wallace,et al.  Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode , 2006 .

[39]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[40]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[41]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[43]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[44]  J. Tarascon,et al.  Influence of Oxygen and Hydrogen Milling Atmospheres on the Electrochemical Properties of Ballmilled Graphite , 2001 .

[45]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[46]  Ernest Yeager,et al.  Differential Capacitance Study on the Basal Plane of Stress-Annealed Pyrolytic Graphite , 1972 .

[47]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .