Extreme density level set estimation for input-output functions via the adaptive splitting technique
暂无分享,去创建一个
[1] Arnaud Guyader,et al. ADAPTIVE PARTICLE TECHNIQUES AND RARE EVENT ESTIMATION , 2007 .
[2] F. Cérou,et al. Adaptive Multilevel Splitting for Rare Event Analysis , 2007 .
[3] Rob J Hyndman,et al. Computing and Graphing Highest Density Regions , 1996 .
[4] H. Fédérer. Geometric Measure Theory , 1969 .
[5] Robert D. Nowak,et al. Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..
[6] Pierre Del Moral. Feynman-Kac and Interacting Particle Recipes , 2004 .
[7] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[8] H. Schubert,et al. O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .
[9] P. Moral,et al. On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.
[10] B. Cadre. Kernel estimation of density level sets , 2005, math/0501221.
[11] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[12] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[13] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[14] Yu Ding,et al. A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection , 2010, Oper. Res..
[15] Kwang-Hyun Cho,et al. Level sets and minimum volume sets of probability density functions , 2003, Int. J. Approx. Reason..
[16] J. Morio,et al. Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system , 2012 .
[17] Rudy Pastel,et al. An overview of importance splitting for rare event simulation , 2010 .