Inferring hidden structure in multilayered neural circuits

A central challenge in sensory neuroscience involves understanding how neural circuits shape computations across cascaded cell layers. Here we attempt to reconstruct the response properties of experimentally unobserved neurons in the interior of a multilayered neural circuit, using cascaded linear-nonlinear (LN-LN) models. We combine non-smooth regularization with proximal consensus algorithms to overcome difficulties in fitting such models that arise from the high dimensionality of their parameter space. We apply this framework to retinal ganglion cell processing, learning LN-LN models of retinal circuitry consisting of thousands of parameters, using 40 minutes of responses to white noise. Our models demonstrate a 53% improvement in predicting ganglion cell spikes over classical linear-nonlinear (LN) models. Internal nonlinear subunits of the model match properties of retinal bipolar cells in both receptive field structure and number. Subunits have consistently high thresholds, supressing all but a small fraction of inputs, leading to sparse activity patterns in which only one subunit drives ganglion cell spiking at any time. From the model’s parameters, we predict that the removal of visual redundancies through stimulus decorrelation across space, a central tenet of efficient coding theory, originates primarily from bipolar cell synapses. Furthermore, the composite nonlinear computation performed by retinal circuitry corresponds to a boolean OR function applied to bipolar cell feature detectors. Our methods are statistically and computationally efficient, enabling us to rapidly learn hierarchical non-linear models as well as efficiently compute widely used descriptive statistics such as the spike triggered average (STA) and covariance (STC) for high dimensional stimuli. This general computational framework may aid in extracting principles of nonlinear hierarchical sensory processing across diverse modalities from limited data.

[1]  Stefano Panzeri,et al.  Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization , 2017, Nature Communications.

[2]  Hiroki Asari,et al.  The Projective Field of Retinal Bipolar Cells and Its Modulation by Visual Context , 2014, Neuron.

[3]  Saskia E. J. de Vries,et al.  Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On , 2007, PLoS Biology.

[4]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[5]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[6]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[7]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[8]  Keith Mathieson,et al.  Retinal Representation of the Elementary Visual Signal , 2014, Neuron.

[9]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[10]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[11]  Adrienne L. Fairhall,et al.  Analysis of Neuronal Spike Trains, Deconstructed , 2016, Neuron.

[12]  Eero P. Simoncelli,et al.  Testing pseudo-linear models of responses to natural scenes in primate retina , 2016, bioRxiv.

[13]  S. Baccus Timing and computation in inner retinal circuitry. , 2007, Annual review of physiology.

[14]  Surya Ganguli,et al.  Pyret: A Python package for analysis of neurophysiology data , 2017, J. Open Source Softw..

[15]  Richa Verma,et al.  Contribution of human cone photoreceptors to the photopic 30-Hz flicker electroretinogram , 2010 .

[16]  J. B. Demb,et al.  Delayed-Rectifier K Channels Contribute to Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2011, Neuron.

[17]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[18]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[19]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[21]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[22]  Rava Azeredo da Silveira,et al.  Dynamical Adaptation in Photoreceptors , 2013, PLoS Comput. Biol..

[23]  Mijung Park,et al.  Bayesian inference for low rank spatiotemporal neural receptive fields , 2013, NIPS.

[24]  Michael J. Berry,et al.  Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli , 2013, PLoS Comput. Biol..

[25]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[26]  M. Meister,et al.  Divergence of visual channels in the inner retina , 2012, Nature Neuroscience.

[27]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[28]  Il Memming Park,et al.  Bayesian Spike-Triggered Covariance Analysis , 2011, NIPS.

[29]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[30]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[31]  Anqi Wu,et al.  Convolutional spike-triggered covariance analysis for neural subunit models , 2015, NIPS.

[32]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[33]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[34]  M. Meister,et al.  Neural Circuit Inference from Function to Structure , 2017, Current Biology.

[35]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[36]  Stephen A. Baccus,et al.  Spatial Segregation of Adaptation and Predictive Sensitization in Retinal Ganglion Cells , 2013, Neuron.

[37]  Olivier Marre,et al.  Features and functions of nonlinear spatial integration by retinal ganglion cells , 2012, Journal of Physiology-Paris.

[38]  Peter Sterling,et al.  Principles of Neural Design , 2015 .

[39]  Michael J. Berry,et al.  Identifying Functional Bases for Multidimensional Neural Computations , 2013, Neural Computation.

[40]  Eero P. Simoncelli,et al.  Efficient and direct estimation of a neural subunit model for sensory coding , 2012, NIPS.

[41]  Mijung Park,et al.  Receptive Field Inference with Localized Priors , 2011, PLoS Comput. Biol..

[42]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[43]  Adrienne L. Fairhall,et al.  What Causes a Neuron to Spike? , 2003, Neural Computation.

[44]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[45]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[46]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[47]  James G. Scott,et al.  Proximal Algorithms in Statistics and Machine Learning , 2015, ArXiv.

[48]  T. Sharpee,et al.  Predictable irregularities in retinal receptive fields , 2009, Proceedings of the National Academy of Sciences.

[49]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[50]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[51]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[52]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[53]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[54]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[55]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[56]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[57]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[58]  Stephen V. David,et al.  The Essential Complexity of Auditory Receptive Fields , 2015, PLoS Comput. Biol..

[59]  Jonathan W. Pillow,et al.  Inferring synaptic conductances from spike trains with a biophysically inspired point process model , 2014, NIPS.

[60]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[61]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Jing Lei,et al.  Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA , 2013, NIPS.

[63]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[64]  S. Baccus,et al.  Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.

[65]  Philipp Berens,et al.  Die Retina im Rausch der Kanäle , 2017, Klinische Monatsblätter für Augenheilkunde.

[66]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[67]  Stephen A Baccus,et al.  Synchronized amplification of local information transmission by peripheral retinal input , 2015, eLife.

[68]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[69]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[70]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[71]  W. Bialek Biophysics: Searching for Principles , 2012 .

[72]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[73]  Surya Ganguli,et al.  Deep learning models reveal internal structure and diverse computations in the retina under natural scenes , 2018, bioRxiv.

[74]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[75]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[76]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[77]  Tatyana O Sharpee,et al.  Computational identification of receptive fields. , 2013, Annual review of neuroscience.

[78]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[79]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[80]  Matthias Bethge,et al.  Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification , 2012, PLoS Comput. Biol..

[81]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[82]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[83]  Eero P. Simoncelli,et al.  Characterizing Neural Gain Control using Spike-triggered Covariance , 2001, NIPS.