MicroRNAs: synthesis, mechanism, function, and recent clinical trials.

MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21-25 nucleotides (nts) in length. They play an important regulatory role in animals and plants by targeting specific mRNAs for degradation or translation repression. Recent scientific advances have revealed the synthesis pathways and the regulatory mechanisms of miRNAs in animals and plants. miRNA-based regulation is implicated in disease etiology and has been studied for treatment. Furthermore, several preclinical and clinical trials have been initiated for miRNA-based therapeutics. In this review, the existing knowledge about miRNAs synthesis, mechanisms for regulation of the genome, and their widespread functions in animals and plants is summarized. The current status of preclinical and clinical trials regarding miRNA therapeutics is also reviewed. The recent findings in miRNA studies, summarized in this review, may add new dimensions to small RNA biology and miRNA therapeutics.

[1]  Rudolf Jaenisch,et al.  DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal , 2007, Nature Genetics.

[2]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[3]  G. Dreyfuss,et al.  Transport of Proteins and RNAs in and out of the Nucleus , 1999, Cell.

[4]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[5]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[6]  L. Miraglia,et al.  Human RNase III Is a 160-kDa Protein Involved in Preribosomal RNA Processing* , 2000, The Journal of Biological Chemistry.

[7]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[8]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[9]  Javier F. Palatnik,et al.  Control of leaf morphogenesis by microRNAs , 2003, Nature.

[10]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[11]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[12]  R. Sunkar,et al.  Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis , 2004, The Plant Cell Online.

[13]  M. A. Rector,et al.  Endogenous and Silencing-Associated Small RNAs in Plants Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003210. , 2002, The Plant Cell Online.

[14]  Edouard Bertrand,et al.  Exportin-5 Mediates Nuclear Export of Minihelix-containing RNAs* , 2003, The Journal of Biological Chemistry.

[15]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[16]  H. Lei,et al.  Molecular cloning of a transcription factor, AGP/EBP, that belongs to members of the C/EBP family , 1990, Molecular and cellular biology.

[17]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[18]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[19]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[20]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[21]  M. Eisen,et al.  Why PLoS Became a Publisher , 2003, PLoS biology.

[22]  Wen-chang Lin,et al.  Bioinformatic discovery of microRNA precursors from human ESTs and introns , 2006, BMC Genomics.

[23]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[24]  H. Grosshans,et al.  Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins , 2009, The EMBO journal.

[25]  Marjori Matzke,et al.  Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors1[w] , 2003, Plant Physiology.

[26]  C. X. Qiu,et al.  Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. , 2007, Gene.

[27]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[28]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[29]  Hai Huang,et al.  SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. , 2006, The Plant journal : for cell and molecular biology.

[30]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[31]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[32]  Tobias Dezulian,et al.  Conservation and divergence of microRNA families in plants , 2005, Genome Biology.

[33]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[34]  T. Berardini,et al.  HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis , 2003, Development.

[35]  Kazuo Shinozaki,et al.  Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins in Arabidopsis thaliana , 2004, Plant Molecular Biology.

[36]  Masaomi Kato,et al.  microRNAs: small molecules with big roles –C. elegans to human cancer , 2008, Biology of the cell.

[37]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[38]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[39]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[40]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[41]  Michelle T. Juarez,et al.  microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity , 2004, Nature.

[42]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[43]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[44]  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[45]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[46]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[47]  N. Fedoroff,et al.  A Mutation in the Arabidopsis HYL1 Gene Encoding a dsRNA Binding Protein Affects Responses to Abscisic Acid, Auxin, and Cytokinin , 2000, Plant Cell.

[48]  V. Solovyev,et al.  A novel type of RNase III family proteins in eukaryotes. , 2000, Gene.

[49]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[50]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[51]  Edwin Cuppen,et al.  The microRNA-producing enzyme Dicer1 is essential for zebrafish development , 2003, Nature Genetics.

[52]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[53]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[54]  C. Mello,et al.  The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DExH-Box Helicase to Direct RNAi in C. elegans , 2002, Cell.

[55]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[56]  Bin Fan,et al.  MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans , 2007, BMC Bioinformatics.

[57]  S. Jacobsen,et al.  Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. , 1999, Development.

[58]  J. Reed,et al.  Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction , 2006, Development.

[59]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[60]  M. Schmid,et al.  Specific effects of microRNAs on the plant transcriptome. , 2005, Developmental cell.

[61]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[62]  Ravi Jain,et al.  MicroRNA-143 Regulates Adipocyte Differentiation* , 2004, Journal of Biological Chemistry.

[63]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[64]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[65]  R. Poethig,et al.  HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. , 1998, Development.

[66]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[67]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[68]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[69]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[70]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[71]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[72]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[73]  F. Gubler,et al.  Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family , 2007, Proceedings of the National Academy of Sciences.

[74]  Detlef Weigel,et al.  Dual Effects of miR156-Targeted SPL Genes and CYP78A5/KLUH on Plastochron Length and Organ Size in Arabidopsis thaliana[W][OA] , 2008, The Plant Cell Online.

[75]  Anton J. Enright,et al.  microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. , 2007, Immunity.

[76]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[77]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature reviews genetics.

[78]  Donald C. Chang,et al.  Loss of mir-146a function in hormone-refractory prostate cancer. , 2008, RNA.

[79]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[80]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[81]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[82]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[83]  E. Bertrand,et al.  Human let-7 stem-loop precursors harbor features of RNase III cleavage products. , 2003, Nucleic acids research.

[84]  A. Ray,et al.  SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. , 1996, Development.

[85]  Baohong Zhang,et al.  Identification of 188 conserved maize microRNAs and their targets , 2006, FEBS letters.

[86]  P. Laufs,et al.  The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis[W] , 2006, The Plant Cell Online.

[87]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[88]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[89]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Alessandro Fatica,et al.  A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.

[91]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[92]  F. Gubler,et al.  The Arabidopsis GAMYB-Like Genes, MYB33 and MYB65, Are MicroRNA-Regulated Genes That Redundantly Facilitate Anther Development , 2005, The Plant Cell Online.

[93]  M. Matzke,et al.  Short RNAs Can Identify New Candidate Transposable Element Families in Arabidopsis , 2002, Plant Physiology.

[94]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[95]  Patrick Achard,et al.  Modulation of floral development by a gibberellin-regulated microRNA , 2004, Development.

[96]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[97]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[98]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[99]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[100]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[101]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[102]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[103]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[104]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[105]  Xuemei Chen MicroRNA metabolism in plants. , 2008, Current topics in microbiology and immunology.

[106]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.

[107]  G. Mack MicroRNA gets down to business , 2007, Nature Biotechnology.

[108]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[109]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[110]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[111]  John G Doench,et al.  Comparison of siRNA-induced off-target RNA and protein effects. , 2007, RNA.

[112]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[113]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[114]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[115]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[116]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[117]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[118]  K. Fortin,et al.  Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location , 2002, BMC Genomics.

[119]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[120]  Matthias W. Hentze,et al.  Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation , 2007, Nature.

[121]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[122]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[123]  James M. Pipas,et al.  SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells , 2005, Nature.

[124]  F. Slack,et al.  A Developmental Timing MicroRNA and Its Target Regulate Life Span in C. elegans , 2005, Science.

[125]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[126]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[127]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[128]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[129]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[130]  Scott A. Givan,et al.  Expression of Arabidopsis MIRNA Genes1[w] , 2005, Plant Physiology.

[131]  Vincent L. Chiang,et al.  Novel and Mechanical Stress–Responsive MicroRNAs in Populus trichocarpa That Are Absent from Arabidopsisw⃞ , 2005, The Plant Cell Online.

[132]  C. Denis,et al.  The CCR4 and CAF1 Proteins of the CCR4-NOT Complex Are Physically and Functionally Separated from NOT2, NOT4, and NOT5 , 1999, Molecular and Cellular Biology.

[133]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[134]  M. Kiriakidou,et al.  An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation , 2007, Cell.

[135]  N. Chua,et al.  MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development , 2005, The Plant Cell Online.

[136]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[137]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[139]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[140]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[141]  Doreen Ware,et al.  Evolution of Arabidopsis microRNA families through duplication events. , 2006, Genome research.

[142]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[143]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[144]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[145]  J. Rappsilber,et al.  The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively , 1998, The EMBO journal.

[146]  David C Baulcombe,et al.  Cloning and characterization of micro-RNAs from moss. , 2005, The Plant journal : for cell and molecular biology.

[147]  Elliot M. Meyerowitz,et al.  The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis , 2005, Current Biology.

[148]  Gang Wu,et al.  Nuclear processing and export of microRNAs in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[149]  A. Pasquinelli,et al.  MicroRNA silencing through RISC recruitment of eIF6 , 2007, Nature.

[150]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[151]  T. Ait-Ali,et al.  HOW GIBBERELLIN REGULATES PLANT GROWTH AND DEVELOPMENT: A Molecular Genetic Analysis of Gibberellin Signaling. , 2001, Annual review of plant physiology and plant molecular biology.

[152]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[153]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[154]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[155]  G. Halder,et al.  The bantam MicroRNA Is a Target of the Hippo Tumor-Suppressor Pathway , 2006, Current Biology.

[156]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[157]  Ottoline Leyser,et al.  The Arabidopsis F-box protein TIR1 is an auxin receptor , 2005, Nature.

[158]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[159]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[160]  Cathie Martin,et al.  SERRATE: a new player on the plant microRNA scene , 2006, EMBO reports.

[161]  Toru Suzuki,et al.  Stage‐specific expression of microRNAs during Xenopus development , 2005, FEBS letters.

[162]  D. Bartel,et al.  Antiquity of MicroRNAs and Their Targets in Land Plantsw⃞ , 2005, The Plant Cell Online.

[163]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[164]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[165]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[166]  Youn-sung Kim,et al.  microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. , 2005, The Plant journal : for cell and molecular biology.

[167]  B. Cullen,et al.  Efficient Processing of Primary microRNA Hairpins by Drosha Requires Flanking Nonstructured RNA Sequences* , 2005, Journal of Biological Chemistry.

[168]  A. Herr Pathways through the small RNA world of plants , 2005, FEBS letters.

[169]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[170]  Shivakundan Singh Tej,et al.  Elucidation of the Small RNA Component of the Transcriptome , 2005, Science.

[171]  Shane T. Jensen,et al.  MicroRNA promoter element discovery in Arabidopsis. , 2006, RNA.

[172]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[173]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[174]  D. Haber,et al.  Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression , 2007, Cell.

[175]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[176]  Michael T. McManus,et al.  The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development , 2005, Nature.

[177]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[178]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[179]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[180]  C. Print,et al.  MicroRNA-regulated pathways associated with endometriosis. , 2009, Molecular endocrinology.

[181]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[182]  E. Izaurralde,et al.  GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay , 2008, Nature Structural &Molecular Biology.

[183]  Hong Ma,et al.  Plant fertility defects induced by the enhanced expression of microRNA167 , 2006, Cell Research.

[184]  Damien Garcia A miRacle in plant development: role of microRNAs in cell differentiation and patterning. , 2008, Seminars in cell & developmental biology.

[185]  You Young Kim,et al.  Piwi-interacting RNAs (piRNAs) in animals: The story so far , 2009 .

[186]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.