AMBCR: Low-light image enhancement via attention guided multi-branch construction and Retinex theory

[1]  Xiaoming Liu,et al.  Color-wise Attention Network for Low-light Image Enhancement , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[2]  Chi-Wing Fu,et al.  Underexposed Photo Enhancement Using Deep Illumination Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[4]  Antonios Gasteratos,et al.  On the evaluation of illumination compensation algorithms , 2018, Multimedia Tools and Applications.

[5]  Kai Xie,et al.  Efficient medical image enhancement based on CNN-FBB model , 2019, IET Image Process..

[6]  Lei Xiong,et al.  VIF-Net: An Unsupervised Framework for Infrared and Visible Image Fusion , 2020, IEEE Transactions on Computational Imaging.

[7]  Wen-Huang Cheng,et al.  LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model , 2020, IEEE Transactions on Image Processing.

[8]  Zhengfang Duanmu,et al.  Multi-Exposure Image Fusion by Optimizing A Structural Similarity Index , 2018, IEEE Transactions on Computational Imaging.

[9]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[10]  Junping Du,et al.  Low-Light Image Enhancement via a Deep Hybrid Network , 2019, IEEE Transactions on Image Processing.

[11]  Shaogang Gong,et al.  Face re-identification challenge: Are face recognition models good enough? , 2020, Pattern Recognit..

[12]  Yao Lu,et al.  Fast efficient algorithm for enhancement of low lighting video , 2011, ICME.

[13]  Alan C. Bovik,et al.  Image information and visual quality , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Alan C. Bovik,et al.  Making a “Completely Blind” Image Quality Analyzer , 2013, IEEE Signal Processing Letters.

[15]  Xiao-Ping Zhang,et al.  A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Fatih Murat Porikli,et al.  LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement , 2018, Pattern Recognit. Lett..

[17]  Jia Xu,et al.  Learning to See in the Dark , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  Chee Seng Chan,et al.  Getting to Know Low-light Images with The Exclusively Dark Dataset , 2018, Comput. Vis. Image Underst..

[19]  Jie Tang,et al.  Residual Feature Aggregation Network for Image Super-Resolution , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Ronggang Wang,et al.  A New Image Contrast Enhancement Algorithm Using Exposure Fusion Framework , 2017, CAIP.

[21]  Sam Kwong,et al.  Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Li Tao,et al.  LLCNN: A convolutional neural network for low-light image enhancement , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[23]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[24]  Yunchao Wei,et al.  Deep Learning with S-Shaped Rectified Linear Activation Units , 2015, AAAI.

[25]  Kwanghoon Sohn,et al.  Unsupervised Low-Light Image Enhancement Using Bright Channel Prior , 2020, IEEE Signal Processing Letters.

[26]  Lei Zhang,et al.  Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images , 2018, IEEE Transactions on Image Processing.

[27]  Delu Zeng,et al.  A fusion-based enhancing method for weakly illuminated images , 2016, Signal Process..

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[29]  Chen Wei,et al.  Deep Retinex Decomposition for Low-Light Enhancement , 2018, BMVC.

[30]  Ruichao Hou,et al.  Multimodal medical image fusion based on the spectral total variation and local structural patch measurement , 2020 .

[31]  Kwanghoon Sohn,et al.  Unsupervised Deep Image Fusion With Structure Tensor Representations , 2020, IEEE Transactions on Image Processing.

[32]  Qi Li,et al.  Low-light image enhancement with strong light weakening and bright halo suppressing , 2019, IET Image Process..

[33]  Payman Moallem,et al.  Fast and robust small infrared target detection using absolute directional mean difference algorithm , 2018, Signal Process..

[34]  Debotosh Bhattacharjee,et al.  LMZMPM: Local Modified Zernike Moment Per-Unit Mass for Robust Human Face Recognition , 2021, IEEE Transactions on Information Forensics and Security.

[35]  Wangmeng Zuo,et al.  Attention-guided CNN for image denoising , 2020, Neural Networks.

[36]  Jianxin Shen,et al.  Fundus Image Enhancement Method Based on CycleGAN , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[37]  Jaejun Yoo,et al.  Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network , 2017, IEEE Transactions on Medical Imaging.

[38]  Hai-Miao Hu,et al.  Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images , 2013, IEEE Transactions on Image Processing.

[39]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[40]  Nenghai Yu,et al.  Controllable Image Processing via Adaptive FilterBank Pyramid , 2020, IEEE Transactions on Image Processing.

[41]  Jianhua Wu,et al.  MBLLEN: Low-Light Image/Video Enhancement Using CNNs , 2018, BMVC.

[42]  Long Chen,et al.  DenseLightNet: A Light-Weight Vehicle Detection Network for Autonomous Driving , 2020, IEEE Transactions on Industrial Electronics.

[43]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[44]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Dongfang Liu,et al.  Video object detection for autonomous driving: Motion-aid feature calibration , 2020, Neurocomputing.

[46]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Xiaojie Guo,et al.  Kindling the Darkness: A Practical Low-light Image Enhancer , 2019, ACM Multimedia.

[48]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[49]  Xin Zhao,et al.  GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Takayuki Hamamoto,et al.  Multi-Frame RGB/NIR Imaging for Low-Light Color Image Super-Resolution , 2020, IEEE Transactions on Computational Imaging.

[51]  Yu Li,et al.  LIME: Low-Light Image Enhancement via Illumination Map Estimation , 2017, IEEE Transactions on Image Processing.

[52]  Ruichao Hou,et al.  Construction of high dynamic range image based on gradient information transformation , 2020, IET Image Process..

[53]  Soumik Sarkar,et al.  LLNet: A deep autoencoder approach to natural low-light image enhancement , 2015, Pattern Recognit..

[54]  John J. McCann,et al.  Calculating Retinal Contrast from Scene Content: A Program , 2018, Front. Psychol..

[55]  Haidi Ibrahim,et al.  Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement , 2007, IEEE Transactions on Consumer Electronics.

[56]  Bradley M. Hemminger,et al.  Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms , 1998, Journal of Digital Imaging.

[57]  J. Alex Stark,et al.  Adaptive image contrast enhancement using generalizations of histogram equalization , 2000, IEEE Trans. Image Process..