HgCdTe detector performance and yield are strongly dependant on CdZnTe substrate and HgCdTe epilayer properties, and on key device processes, especially for 8–12 µm application. Due to the correlation and optimization between these figures and diode performance, AIM has developed a mature HgCdTe technology for superior detector performance and high production rate. To meet high yield and performance for long wavelength (LW) HgCdTe diodes, dislocation densities of < 1 × 10t cm−2 both in substrate and epilayer have to be ensured. By a unique AIM substrate growth process, dislocation densities of 2 × 104-9 × 104 cm−2 are achieved for all substrates and epilayers (100% yield). The etch pit density (EPD) on 〈111〉 epilayers is revealed by an AIM proprietary etching procedure. One critical effect is the dislocations in the diode area, which can originate from the substrate and epilayer growth and the subsequent device processes, respectively. Our studies have shown that device processes can cause additional dislocations in the diode area.Diode yield was clearly improved by a combination of wet and dry etching for diode contact etching.