Probe Incompatibility in Multiparameter Noisy Quantum Channel Estimation
暂无分享,去创建一个
[1] Masahito Ueda,et al. Finite-error metrological bounds on multiparameter Hamiltonian estimation , 2017, 1708.09556.
[2] Haidong Yuan. Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.
[3] Richard D. Gill,et al. Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.
[4] Tobias J. Osborne,et al. Tensor-network approach for quantum metrology in many-body quantum systems , 2020, Nature Communications.
[5] P. Humphreys,et al. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.
[6] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[7] A. Acín. Statistical distinguishability between unitary operations. , 2001, Physical review letters.
[8] L. Pezzè,et al. Multiparameter squeezing for optimal quantum enhancements in sensor networks , 2019, Nature Communications.
[9] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[10] Daowen Qiu. Minimum-error discrimination between mixed quantum states , 2007, 0707.3970.
[11] Karsten Danzmann,et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light , 2019 .
[12] Heng Fan,et al. Quantum-enhanced metrology for multiple phase estimation with noise , 2013, Scientific Reports.
[13] Xiao-Ming Lu,et al. Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation. , 2020, Physical review letters.
[14] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[15] Masahito Hayashi,et al. Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation , 2010, 1003.4575.
[16] Kristan Temme. Runtime of unstructured search with a faulty Hamiltonian oracle , 2014 .
[17] Fabio Sciarrino,et al. Experimental multiphase estimation on a chip , 2019, Optica.
[18] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[19] Haidong Yuan,et al. Maximal quantum Fisher information matrix , 2017, 1705.08649.
[20] Haidong Yuan,et al. "Super-Heisenberg" and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field. , 2021, Physical review letters.
[21] Vishal Katariya,et al. RLD Fisher information bound for multiparameter estimation of quantum channels , 2020, New Journal of Physics.
[22] Jun Suzuki,et al. Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory , 2018, Entropy.
[23] Francesco Albarelli,et al. Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. , 2019, Physical review letters.
[24] Marco Barbieri,et al. Multiparameter quantum metrology , 2012 .
[25] J. R. Palamos,et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. , 2019, Physical review letters.
[26] A. Datta,et al. Quantum Semiparametric Estimation , 2019, 1906.09871.
[27] J. Goold,et al. Thermodynamics of precision in quantum nonequilibrium steady states , 2019, Physical Review Research.
[28] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[29] Yoshihiko Hasegawa. Quantum Thermodynamic Uncertainty Relation for Continuous Measurement. , 2019, Physical review letters.
[30] Earl T. Campbell,et al. Tight Bounds on the Simultaneous Estimation of Incompatible Parameters , 2019, Physical Review X.
[31] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[32] Maris Ozols,et al. Quantum Random Access Codes with Shared Randomness , 2008, 0810.2937.
[33] P. Lam,et al. Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2020, npj Quantum Information.
[34] Runyao Duan,et al. Perfect distinguishability of quantum operations. , 2009, Physical review letters.
[35] Liang Jiang,et al. Asymptotic Theory of Quantum Channel Estimation , 2020 .
[36] Nengkun Yu,et al. Chernoff Bound for Quantum Operations is Faithful , 2017 .
[37] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[38] M. Ballester,et al. Entanglement is not very useful for estimating multiple phases , 2004, quant-ph/0403190.
[39] Jonathan P. Dowling,et al. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit , 2017, JSAP-OSA Joint Symposia 2017 Abstracts.
[40] F. Illuminati,et al. Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states , 2008, 0807.3958.
[41] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[42] Jan Kolodynski,et al. Precision bounds in noisy quantum metrology , 2014, 1409.0535.
[43] Animesh Datta,et al. Gaussian systems for quantum-enhanced multiple phase estimation , 2016, 1605.04819.
[44] Lu Zhang,et al. Quantum multiparameter estimation with generalized balanced multimode NOON-like states , 2017, 1703.00063.
[45] Jing Yang,et al. Optimal measurements for quantum multiparameter estimation with general states , 2018, Physical Review A.
[46] Pavel Sekatski,et al. Quantum metrology with full and fast quantum control , 2016, 1603.08944.
[47] Bernardo Spagnolo,et al. On quantumness in multi-parameter quantum estimation , 2019, Journal of Statistical Mechanics: Theory and Experiment.
[48] S. Silvey. Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .
[49] Konrad Banaszek,et al. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.
[50] Mark M. Wilde,et al. Geometric distinguishability measures limit quantum channel estimation and discrimination , 2021, Quantum Inf. Process..
[51] Matrix product states for quantum metrology , 2013 .
[52] Marco Barbieri,et al. Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.
[53] C. Helstrom. Quantum detection and estimation theory , 1969 .
[54] Armin Tavakoli,et al. Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.
[55] J. Preskill,et al. Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.
[56] Gerard J. Milburn,et al. Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..
[57] Edward Farhi,et al. Analog analogue of a digital quantum computation , 1996 .
[58] S. Pirandola,et al. Ultimate Precision of Adaptive Noise Estimation. , 2016, Physical review letters.
[59] Chiara Macchiavello. Optimal estimation of multiple phases , 2003 .
[60] Liang Jiang,et al. Optimal approximate quantum error correction for quantum metrology , 2019 .
[61] Jan Kolodynski,et al. Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.
[62] Johannes Jakob Meyer,et al. Fisher Information in Noisy Intermediate-Scale Quantum Applications , 2021, Quantum.
[63] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[64] S. Knysh,et al. Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.
[65] Meng Khoon Tey,et al. Multi-parameter estimation with multi-mode Ramsey interferometry , 2019, New Journal of Physics.
[66] Marco G. Genoni,et al. Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.
[67] A. Uhlmann. The Metric of Bures and the Geometric Phase. , 1992 .
[68] Marco G. Genoni,et al. On the Quantumness of Multiparameter Estimation Problems for Qubit Systems , 2020, Entropy.
[69] P. Lam,et al. Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2021, npj Quantum Information.
[71] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[72] Animesh Datta,et al. Reaching for the quantum limits in the simultaneous estimation of phase and phase diffusion , 2017, 1701.07520.
[73] Lorenzo Maccone,et al. Using entanglement against noise in quantum metrology. , 2014, Physical review letters.
[74] Masahito Hayashi,et al. Attaining the Ultimate Precision Limit in Quantum State Estimation , 2018, Communications in Mathematical Physics.
[75] Zachary Eldredge,et al. Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.
[76] Manuel A. Ballester. Estimation of unitary quantum operations , 2004 .
[77] J. Czajkowski,et al. Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.
[78] Rafal Demkowicz-Dobrzanski,et al. Quantum computation speedup limits from quantum metrological precision bounds , 2015 .
[79] D. Petz. Monotone metrics on matrix spaces , 1996 .
[80] Liqiang Liu,et al. Minimal Tradeoff and Ultimate Precision Limit of Multiparameter Quantum Magnetometry under the Parallel Scheme. , 2020, Physical review letters.
[81] Manuel Gessner,et al. Sensitivity Bounds for Multiparameter Quantum Metrology. , 2018, Physical review letters.
[82] Fabio Sciarrino,et al. Experimental adaptive Bayesian estimation of multiple phases with limited data , 2020, npj Quantum Information.
[83] Liang Jiang,et al. New perspectives on covariant quantum error correction , 2021, Quantum.
[84] Animesh Datta,et al. Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.
[85] Joseph M. Renes,et al. Covariant Quantum Error Correcting Codes via Reference Frames , 2020 .
[86] Rafal Demkowicz-Dobrzanski,et al. Using Quantum Metrological Bounds in Quantum Error Correction: A Simple Proof of the Approximate Eastin-Knill Theorem. , 2020, Physical review letters.
[87] B. Terhal. Quantum error correction for quantum memories , 2013, 1302.3428.
[88] Hiroshi Imai,et al. Geometry of optimal estimation scheme for SU(D) channels , 2007 .
[89] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[90] Haidong Yuan,et al. Zero–trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations , 2021, Science Advances.
[91] P. Humphreys,et al. Quantum enhanced multiple phase estimation. , 2013, Physical review letters.
[92] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[93] Sammy Ragy,et al. Compatibility in multiparameter quantum metrology , 2016, 1608.02634.
[94] Jing Liu,et al. Quantum Fisher information matrix and multiparameter estimation , 2019, Journal of Physics A: Mathematical and Theoretical.
[95] M. M. Taddei,et al. Quantum speed limit for physical processes. , 2012, Physical review letters.
[96] Jonas Kahn. Fast rate estimation of a unitary operation in SU(d) , 2007 .
[97] Keiji matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .
[98] Sebastian Deffner,et al. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control , 2017, 1705.08023.
[99] Andreas J. Winter,et al. How Many Copies are Needed for State Discrimination? , 2012, IEEE Transactions on Information Theory.