Probe Incompatibility in Multiparameter Noisy Quantum Channel Estimation

We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum channel estimation, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the bounds obtained by a direct use of single-parameter bounds. This allows us to study the issue of the optimal probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels, while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg scaling is possible). We apply our results to the estimation of both unitary and noise parameters, and indicate models where the fundamental probe incompatibility is present. In particular, we show that in lossy multiple arm interferometry the probe incompatibility is as strong as in the noiseless scenario. Finally, going beyond the multiple-parameter estimation paradigm, we introduce the concept of \emph{random quantum sensing} and show how the tools developed may be applied to multiple channels discrimination problems. As an illustration, we provide a simple proof of the loss of the quadratic advantage of time-continuous Grover algorithm in presence of dephasing or erasure noise.

[1]  Masahito Ueda,et al.  Finite-error metrological bounds on multiparameter Hamiltonian estimation , 2017, 1708.09556.

[2]  Haidong Yuan Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation. , 2016, Physical review letters.

[3]  Richard D. Gill,et al.  Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.

[4]  Tobias J. Osborne,et al.  Tensor-network approach for quantum metrology in many-body quantum systems , 2020, Nature Communications.

[5]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[6]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[7]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[8]  L. Pezzè,et al.  Multiparameter squeezing for optimal quantum enhancements in sensor networks , 2019, Nature Communications.

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[10]  Daowen Qiu Minimum-error discrimination between mixed quantum states , 2007, 0707.3970.

[11]  Karsten Danzmann,et al.  Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light , 2019 .

[12]  Heng Fan,et al.  Quantum-enhanced metrology for multiple phase estimation with noise , 2013, Scientific Reports.

[13]  Xiao-Ming Lu,et al.  Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation. , 2020, Physical review letters.

[14]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[15]  Masahito Hayashi,et al.  Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation , 2010, 1003.4575.

[16]  Kristan Temme Runtime of unstructured search with a faulty Hamiltonian oracle , 2014 .

[17]  Fabio Sciarrino,et al.  Experimental multiphase estimation on a chip , 2019, Optica.

[18]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[19]  Haidong Yuan,et al.  Maximal quantum Fisher information matrix , 2017, 1705.08649.

[20]  Haidong Yuan,et al.  "Super-Heisenberg" and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field. , 2021, Physical review letters.

[21]  Vishal Katariya,et al.  RLD Fisher information bound for multiparameter estimation of quantum channels , 2020, New Journal of Physics.

[22]  Jun Suzuki,et al.  Information Geometrical Characterization of Quantum Statistical Models in Quantum Estimation Theory , 2018, Entropy.

[23]  Francesco Albarelli,et al.  Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. , 2019, Physical review letters.

[24]  Marco Barbieri,et al.  Multiparameter quantum metrology , 2012 .

[25]  J. R. Palamos,et al.  Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. , 2019, Physical review letters.

[26]  A. Datta,et al.  Quantum Semiparametric Estimation , 2019, 1906.09871.

[27]  J. Goold,et al.  Thermodynamics of precision in quantum nonequilibrium steady states , 2019, Physical Review Research.

[28]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[29]  Yoshihiko Hasegawa Quantum Thermodynamic Uncertainty Relation for Continuous Measurement. , 2019, Physical review letters.

[30]  Earl T. Campbell,et al.  Tight Bounds on the Simultaneous Estimation of Incompatible Parameters , 2019, Physical Review X.

[31]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[32]  Maris Ozols,et al.  Quantum Random Access Codes with Shared Randomness , 2008, 0810.2937.

[33]  P. Lam,et al.  Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2020, npj Quantum Information.

[34]  Runyao Duan,et al.  Perfect distinguishability of quantum operations. , 2009, Physical review letters.

[35]  Liang Jiang,et al.  Asymptotic Theory of Quantum Channel Estimation , 2020 .

[36]  Nengkun Yu,et al.  Chernoff Bound for Quantum Operations is Faithful , 2017 .

[37]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[38]  M. Ballester,et al.  Entanglement is not very useful for estimating multiple phases , 2004, quant-ph/0403190.

[39]  Jonathan P. Dowling,et al.  Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit , 2017, JSAP-OSA Joint Symposia 2017 Abstracts.

[40]  F. Illuminati,et al.  Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states , 2008, 0807.3958.

[41]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[42]  Jan Kolodynski,et al.  Precision bounds in noisy quantum metrology , 2014, 1409.0535.

[43]  Animesh Datta,et al.  Gaussian systems for quantum-enhanced multiple phase estimation , 2016, 1605.04819.

[44]  Lu Zhang,et al.  Quantum multiparameter estimation with generalized balanced multimode NOON-like states , 2017, 1703.00063.

[45]  Jing Yang,et al.  Optimal measurements for quantum multiparameter estimation with general states , 2018, Physical Review A.

[46]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[47]  Bernardo Spagnolo,et al.  On quantumness in multi-parameter quantum estimation , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[48]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[49]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[50]  Mark M. Wilde,et al.  Geometric distinguishability measures limit quantum channel estimation and discrimination , 2021, Quantum Inf. Process..

[51]  Matrix product states for quantum metrology , 2013 .

[52]  Marco Barbieri,et al.  Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.

[53]  C. Helstrom Quantum detection and estimation theory , 1969 .

[54]  Armin Tavakoli,et al.  Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.

[55]  J. Preskill,et al.  Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.

[56]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[57]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[58]  S. Pirandola,et al.  Ultimate Precision of Adaptive Noise Estimation. , 2016, Physical review letters.

[59]  Chiara Macchiavello Optimal estimation of multiple phases , 2003 .

[60]  Liang Jiang,et al.  Optimal approximate quantum error correction for quantum metrology , 2019 .

[61]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[62]  Johannes Jakob Meyer,et al.  Fisher Information in Noisy Intermediate-Scale Quantum Applications , 2021, Quantum.

[63]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[64]  S. Knysh,et al.  Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.

[65]  Meng Khoon Tey,et al.  Multi-parameter estimation with multi-mode Ramsey interferometry , 2019, New Journal of Physics.

[66]  Marco G. Genoni,et al.  Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.

[67]  A. Uhlmann The Metric of Bures and the Geometric Phase. , 1992 .

[68]  Marco G. Genoni,et al.  On the Quantumness of Multiparameter Estimation Problems for Qubit Systems , 2020, Entropy.

[69]  P. Lam,et al.  Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2021, npj Quantum Information.

[71]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[72]  Animesh Datta,et al.  Reaching for the quantum limits in the simultaneous estimation of phase and phase diffusion , 2017, 1701.07520.

[73]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[74]  Masahito Hayashi,et al.  Attaining the Ultimate Precision Limit in Quantum State Estimation , 2018, Communications in Mathematical Physics.

[75]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.

[76]  Manuel A. Ballester Estimation of unitary quantum operations , 2004 .

[77]  J. Czajkowski,et al.  Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.

[78]  Rafal Demkowicz-Dobrzanski,et al.  Quantum computation speedup limits from quantum metrological precision bounds , 2015 .

[79]  D. Petz Monotone metrics on matrix spaces , 1996 .

[80]  Liqiang Liu,et al.  Minimal Tradeoff and Ultimate Precision Limit of Multiparameter Quantum Magnetometry under the Parallel Scheme. , 2020, Physical review letters.

[81]  Manuel Gessner,et al.  Sensitivity Bounds for Multiparameter Quantum Metrology. , 2018, Physical review letters.

[82]  Fabio Sciarrino,et al.  Experimental adaptive Bayesian estimation of multiple phases with limited data , 2020, npj Quantum Information.

[83]  Liang Jiang,et al.  New perspectives on covariant quantum error correction , 2021, Quantum.

[84]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[85]  Joseph M. Renes,et al.  Covariant Quantum Error Correcting Codes via Reference Frames , 2020 .

[86]  Rafal Demkowicz-Dobrzanski,et al.  Using Quantum Metrological Bounds in Quantum Error Correction: A Simple Proof of the Approximate Eastin-Knill Theorem. , 2020, Physical review letters.

[87]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[88]  Hiroshi Imai,et al.  Geometry of optimal estimation scheme for SU(D) channels , 2007 .

[89]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[90]  Haidong Yuan,et al.  Zero–trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations , 2021, Science Advances.

[91]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[92]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[93]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[94]  Jing Liu,et al.  Quantum Fisher information matrix and multiparameter estimation , 2019, Journal of Physics A: Mathematical and Theoretical.

[95]  M. M. Taddei,et al.  Quantum speed limit for physical processes. , 2012, Physical review letters.

[96]  Jonas Kahn Fast rate estimation of a unitary operation in SU(d) , 2007 .

[97]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[98]  Sebastian Deffner,et al.  Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control , 2017, 1705.08023.

[99]  Andreas J. Winter,et al.  How Many Copies are Needed for State Discrimination? , 2012, IEEE Transactions on Information Theory.