Typology and behaviour of tuna aggregations around fish aggregating devices from acoustic surveys in French Polynesia

Quatre-vingt-sept prospections acoustiques, d'une duree de deux heures, ont ete effectuees entre decembre 1995 et fevrier 1997 en Polynesie francaise autour de 17 dispositifs de concentration de poissons (DCP). Les densites en thons, entre la surface et 500 m de profondeur et dans un rayon de 0.8 mille nautique autour des DCP, ont ete estimees par echo-comptage en presence de poissons disperses, ou par echointegration en presence de poissons agreges en bancs. Lors de 27 prospections, (representant respectivement 81 % et 15 % des prospections nocturnes et diurnes effectuees), aucune detection de thon n'a ete observee. Les 60 autres prospections ont montre 3 differents types d'agregation : (1) le type « poissons disperses profonds » observe 45 fois, (2) le type « poissons disperses intermediaires » observe 16 fois el (3) le type « poissons en bancs superficiels » observe 16 fois. Differents types d'agregation ont parfois ete observes sous un meme DCP. La taille des poissons (determinee a partir des valeurs d'indice de reflexion individuel ou TS), la distance entre les individus et la profondeur des detections diminuent, alors que les densites augmentent, entre les types « poissons disperses profonds » (7.3 poissons par km 3 entre 100 et 300 m de profondeur), « poissons disperses intermediaires » (26 poissons par km 3 entre 50 et 150 m) et « poissons en bancs superficiels » (801 poissons par km 3 entre la surface et 50 m). Les densites les plus fortes ont ete observees de jour, alors que de nuit, differentes situations, depuis l'absence totale de detection jusqu'a la presence de densites elevees ont ete rencontrees.

[1]  K. Fabbri A methodology for supporting decision making in integrated coastal zone management , 1998 .

[2]  E. Cillaurren Daily fluctuations in the presence of Thunnus albacares and Katsuwonus pelamis around fish aggregating devices anchored in Vanuatu, Oceania , 1995 .

[3]  J. Minvielle Les systèmes d'information : fausses évidences, contraintes et réalités , 1996 .

[4]  I. Nakamura,et al.  Fao Species Catalogue , 1972 .

[5]  Robert J. Olson,et al.  Apex Predation by Yellowfïn Tuna (Thunnus albacares): Independent Estimates from Gastric Evacuation and Stomach Contents, Bioenergetics, and Cesium Concentrations , 1986 .

[6]  P. Cayre Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelarnis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging , 1991 .

[7]  Barbara A. Block,et al.  Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes , 1999 .

[8]  W. White A Narrow Boundary Current Along the Eastern Side of the Hawaiian Ridge; The North Hawaiian Ridge Current , 1983 .

[9]  Jean-Yves Le Gall,et al.  Pêche thonière et dispositifs de concentration de poissons , 1999 .

[10]  P. Cayré,et al.  Marquage acoustique et comportement de thons tropicaux (albacore : THUNNUS ALBACARES, et listao : KATSUWONUS PELAMIS) au voisinage d'un dispositif concentrateur de poissons , 1986 .

[11]  E. Josse,et al.  Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean, determined using ultrasonic telemetry , 2000 .

[12]  L. Dagorn,et al.  An acoustic approach to study tuna aggregated around fish aggregating devices in French Polynesia: methods and validation , 1999 .

[13]  Simon Benhamou,et al.  Efficiency of area-concentrated searching behaviour in a continuous patchy environment* , 1992 .

[14]  J. Magnuson Digestion and Food Consumption by Skipjack Tuna (Katsuwonus pelamis) , 1969 .

[15]  O L E A Rv,et al.  Underwater acoustics in marine fisheries and fisheries research , 1997 .

[16]  A. Bertrand,et al.  Acoustic characterisation of micronekton distribution in French Polynesia , 1999 .

[17]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[18]  P. Cayré,et al.  Behaviour of yellowfin ( Thunnus albacares ) and skipjack tuna ( Katsuwonus pelamis ) around FADs as determined by sonic tagging , 1991 .

[19]  David A. Fournier,et al.  MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga , 1998 .

[20]  Australia Fisheries,et al.  Indicators for sustainable development of marine capture fisheries , 1999 .

[21]  A. Bertrand,et al.  Acoustic estimation of longline tuna abundance , 2000 .

[22]  K. Holland,et al.  HORIZONTAL AND VERTICAL MOVEMENTS OF YELLOWFIN AND BIGEYE TUNA ASSOCIATED WITH FISH AGGREGATING DEVICES , 1990 .

[23]  C. Menkes,et al.  Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the Eastern Tropical Atlantic , 2000 .

[24]  J. Albaret La reproduction de l'albacore ( Thunnus albacares ) dans le golfe de Guinée , 1977 .

[25]  F. Marsac,et al.  Analysis of small-scale movements of yellowfin tuna around fish- aggregating devices (FADs) using sonic tags , 1996 .

[26]  Erwan Josse,et al.  In situ acoustic target strength measurements of tuna associated with a fish aggregating device , 2000 .

[27]  S Stöcker,et al.  Models for tuna school formation. , 1999, Mathematical biosciences.

[28]  M. Smith,et al.  An Ecological Perspective on Inshore Fisheries in the Main Hawaiian Islands , 1993 .

[29]  K. Holland Biological aspects of the association of tunas with FADs , 1996 .

[30]  A. Bertrand,et al.  In situ acoustic target-strength measurement of bigeye ( Thunnus obesus ) and yellowfin tuna ( Thunnus albacares ) by coupling split-beam echosounder observations and sonic tracking , 1999 .

[31]  J. Hampton,et al.  Modeling Effects of FADs and Islands on Movement of Skipjack Tuna (Katsuwonus pelamis): Estimating Parameters from Tagging Data , 1994 .

[32]  Pascal Bach,et al.  Experimental research and fish aggregating devices (FADs) in French Polynesia , 1998 .

[33]  G. Claireaux,et al.  Advances in Invertebrates and Fish Telemetry , 1998, Developments in Hydrobiology.

[34]  F. G. Carey,et al.  Vertical and horizontal movements of striped marlin (Tetrapturus audax) near the Hawaiian Islands, determined by ultrasonic telemetry, with simultaneous measurement of oceanic currents , 1993 .

[35]  Pierre Fréon,et al.  Tropical tuna associated with floating objects: a simulation study of the meeting point hypothesis , 1999 .

[36]  John Hampton,et al.  Natural mortality rates in tropical tunas: size really does matter , 2000 .

[37]  Claireaux,et al.  Telemetry ' applied to behaviour analysis of yellowfin tuna ( Thunnus albacares , Bonnaterre , 1788 ) movements in a network of fish aggregating devices , 2002 .

[38]  Anne E. Magurran,et al.  Individual differences and alternative behaviours , 1993 .

[39]  W. Patzert,et al.  Anticyclonic Flow Around the Hawaiian Islands Indicated by Current Meter Data , 1974 .

[40]  J. Keen,et al.  Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range , 1997 .