Integrating basic science with translational research: the 13th International Podocyte Conference 2021

[1]  Sulaiman M. Alsulaiman,et al.  Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy , 2022, The Journal of clinical investigation.

[2]  Victor G. Puelles,et al.  Kidneys control inter-organ homeostasis , 2022, Nature Reviews Nephrology.

[3]  O. Kretz,et al.  Synuclein alpha accumulation mediates podocyte injury in Fabry nephropathy , 2021, bioRxiv.

[4]  F. Milliat,et al.  Glomerular endothelial cell senescence drives age‐related kidney disease through PAI‐1 , 2021, EMBO molecular medicine.

[5]  L. P. Van den Heuvel,et al.  The Shiga Toxin Receptor Globotriaosylceramide as Therapeutic Target in Shiga Toxin E. coli Mediated HUS , 2021, Microorganisms.

[6]  S. Shankland,et al.  Podocyte Aging: Why and How Getting Old Matters. , 2021, Journal of the American Society of Nephrology : JASN.

[7]  A. Cavalli,et al.  Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease , 2021, Nature Communications.

[8]  I. Stillman,et al.  Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease , 2021, Disease models & mechanisms.

[9]  Victor G. Puelles,et al.  Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. , 2021, The Journal of clinical investigation.

[10]  Yanhua Zhao,et al.  A Biallelic Frameshift Mutation in Nephronectin Causes Bilateral Renal Agenesis in Humans , 2021, Journal of the American Society of Nephrology : JASN.

[11]  D. Gatti,et al.  Uncovering Modifier Genes of X-Linked Alport Syndrome Using a Novel Multiparent Mouse Model , 2021, Journal of the American Society of Nephrology : JASN.

[12]  C. Cohen,et al.  The role of filamins in mechanically stressed podocytes , 2021, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  T. Benzing,et al.  Insights into Glomerular Filtration and Albuminuria. , 2021, The New England journal of medicine.

[14]  Sidhartha Chaudhry,et al.  Protocadherin 7–Associated Membranous Nephropathy , 2020, Journal of the American Society of Nephrology : JASN.

[15]  W. Ju,et al.  IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes , 2021, Diabetologia.

[16]  O. Schilling,et al.  EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. , 2021, Cell reports.

[17]  J. Hodgin,et al.  Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome , 2021, JCI insight.

[18]  Jie Yan,et al.  Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1 , 2021, bioRxiv.

[19]  Victor G. Puelles,et al.  Deep learning–based molecular morphometrics for kidney biopsies , 2020, bioRxiv.

[20]  R. Harris,et al.  Increased DAAM2, a new podocyte-associated protein, in diabetic nephropathy. , 2021, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[21]  Jamie L. Marshall,et al.  Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ deficiency kidney disease. , 2021, The Journal of clinical investigation.

[22]  Christopher D. Brown,et al.  Kidney disease genetic risk variants alter lysosomal beta-mannosidase (MANBA) expression and disease severity , 2021, Science Translational Medicine.

[23]  S. Mane,et al.  Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice , 2021, Science Advances.

[24]  Victor G. Puelles,et al.  Decoding myofibroblast origins in human kidney fibrosis , 2020, Nature.

[25]  Christopher D. Brown,et al.  Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments , 2020, bioRxiv.

[26]  Aaron J. Storey,et al.  Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. , 2020, Kidney international.

[27]  J. McMurray,et al.  Dapagliflozin in Patients with Chronic Kidney Disease. , 2020, The New England journal of medicine.

[28]  I. Jurisica,et al.  Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. , 2020, Journal of the American Society of Nephrology : JASN.

[29]  Markus M. Rinschen,et al.  Tripartite separation of glomerular cell-types and proteomes from reporter-free mice , 2020, bioRxiv.

[30]  B. Rovin,et al.  Why Target the Gut to Treat IgA Nephropathy? , 2020, Kidney international reports.

[31]  B. Rovin,et al.  Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy , 2020, Kidney international reports.

[32]  A. Paterson,et al.  DNA methylation mediates development of HbA1c-associated complications in type 1 diabetes , 2020, Nature metabolism.

[33]  D. Friedman,et al.  APOL1 Nephropathy: From Genetics to Clinical Applications. , 2020, Clinical journal of the American Society of Nephrology : CJASN.

[34]  M. Humphries,et al.  Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation , 2020, The Journal of cell biology.

[35]  S. Shankland,et al.  Global transcriptomic changes occur in aged mouse podocytes. , 2020, Kidney international.

[36]  Keith W. Muir,et al.  Whole-genome sequencing of patients with rare diseases in a national health system , 2020, Nature.

[37]  D. Sherwood,et al.  Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. , 2020, Developmental cell.

[38]  M. Nagasaki,et al.  Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. , 2020, Kidney international.

[39]  F. Milliat,et al.  P0018GLOMERULAR ENDOTHELIAL CELL SENESCENCE DRIVES AGE-RELATED KIDNEY DISEASE THROUGH PAI-1 , 2020 .

[40]  D. Leaf,et al.  Soluble Urokinase Receptor and Acute Kidney Injury. Reply. , 2020, The New England journal of medicine.

[41]  P. Tharaux,et al.  Parietal epithelial cells role in repair versus scarring after glomerular injury. , 2020, Current opinion in nephrology and hypertension.

[42]  Markus M. Rinschen,et al.  A molecular mechanism explaining albuminuria in kidney disease , 2020, Nature Metabolism.

[43]  Benjamin S. Freedman,et al.  Profiling APOL1 Nephropathy Risk Variants in Genome-Edited Kidney Organoids with Single-Cell Transcriptomics. , 2020, Kidney360.

[44]  Markus M. Rinschen,et al.  Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. , 2020, Journal of the American Society of Nephrology : JASN.

[45]  M. Emani,et al.  A translational kidney organoid system bolsters human relevance of clinical development candidate , 2019, bioRxiv.

[46]  M. Clatworthy,et al.  Using single-cell technologies to map the human immune system — implications for nephrology , 2019, Nature Reviews Nephrology.

[47]  Markus M. Rinschen,et al.  Metabolic rewiring of the hypertensive kidney , 2019, Science Signaling.

[48]  C. Scharf,et al.  Fibronectin is up‐regulated in podocytes by mechanical stress , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  V. Nair,et al.  Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis , 2019, PloS one.

[50]  M. Saleem,et al.  Human Th17 cells produce a soluble mediator that increases podocyte motility via signalling pathways which mimic PAR-1 activation. , 2019, American journal of physiology. Renal physiology.

[51]  Sarah A. Teichmann,et al.  Spatiotemporal immune zonation of the human kidney , 2019, Science.

[52]  N. Boddaert,et al.  Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome , 2019, Nature Communications.

[53]  Jian Cai,et al.  uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. , 2019, The Journal of clinical investigation.

[54]  Jacob M. Keaton,et al.  Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program , 2019, Nature Communications.

[55]  Victor G. Puelles,et al.  The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression , 2019, Nature Communications.

[56]  D. Hooper,et al.  LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients , 2019, Pediatric Nephrology.

[57]  C. Klämbt,et al.  Nephrin Signaling Results in Integrin β1 Activation. , 2019, Journal of the American Society of Nephrology : JASN.

[58]  B. Zinman,et al.  Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. , 2019, The New England journal of medicine.

[59]  Victor G. Puelles,et al.  Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics , 2019, Cell reports.

[60]  D. Sherwood,et al.  α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes , 2019, bioRxiv.

[61]  Victor G. Puelles,et al.  Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions , 2019, Kidney international.

[62]  A. Paterson,et al.  Integration of Genetic Testing and Pathology for the Diagnosis of Adults with FSGS. , 2019, Clinical journal of the American Society of Nephrology : CJASN.

[63]  A. Oshlack,et al.  3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening , 2018, Nature Communications.

[64]  Jessica M. Overstreet,et al.  Pathological and Transcriptome Changes in the ReninAAV db/db uNx Model of Advanced Diabetic Kidney Disease Exhibit Features of Human Disease , 2018, Toxicologic pathology.

[65]  D. Bates,et al.  VEGFC Reduces Glomerular Albumin Permeability and Protects Against Alterations in VEGF Receptor Expression in Diabetic Nephropathy , 2018, Diabetes.

[66]  Christopher D. Brown,et al.  Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease , 2018, Nature Medicine.

[67]  Kristen M. Laricchia,et al.  Mutations in WDR4 as a new cause of Galloway–Mowat syndrome , 2018, American journal of medical genetics. Part A.

[68]  W. Fissell,et al.  What Is the Glomerular Ultrafiltration Barrier? , 2018, Journal of the American Society of Nephrology : JASN.

[69]  M. Humphries,et al.  Cell adhesion is regulated by CDK1 during the cell cycle , 2018, The Journal of cell biology.

[70]  Markus M. Rinschen,et al.  A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes , 2018, Cell reports.

[71]  R. Foster,et al.  A novel assay provides sensitive measurement of physiologically relevant changes in albumin permeability in isolated human and rodent glomeruli , 2018, Kidney international.

[72]  Zhufeng Yang,et al.  Nephronectin Regulates Mesangial Cell Adhesion and Behavior in Glomeruli. , 2018, Journal of the American Society of Nephrology : JASN.

[73]  Markus M. Rinschen Single nephron proteomes connect morphology and function in proteinuric kidney disease , 2018, Kidney international.

[74]  V. Baudrie,et al.  Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension. , 2017, Journal of the American Society of Nephrology : JASN.

[75]  T. B. Huber,et al.  The Evolving Complexity of the Podocyte Cytoskeleton. , 2017, Journal of the American Society of Nephrology : JASN.

[76]  S. Harlan,et al.  Progressive Renal Disease Established by Renin-Coding Adeno-Associated Virus-Driven Hypertension in Diverse Diabetic Models. , 2017, Journal of the American Society of Nephrology : JASN.

[77]  J. Bräsen,et al.  Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. , 2017, Kidney international.

[78]  K. Lopau,et al.  First Treatment of Relapsing Rapidly Progressive IgA Nephropathy With Eculizumab After Living Kidney Donation: A Case Report. , 2017, Transplantation proceedings.

[79]  M. Clatworthy,et al.  Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense Zone , 2017, Cell.

[80]  Jeremy F. P. Ullmann,et al.  Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly , 2017, Nature Genetics.

[81]  M. Schiffer,et al.  Identification of cell and disease specific microRNAs in glomerular pathologies , 2019, Journal of cellular and molecular medicine.

[82]  J. Coresh,et al.  A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease , 2017, Nature Medicine.

[83]  Albert Sickmann,et al.  The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier , 2017, Proceedings of the National Academy of Sciences.

[84]  Markus M. Rinschen,et al.  YAP-mediated mechanotransduction determines the podocyte’s response to damage , 2017, Science Signaling.

[85]  Patrick D. Dummer,et al.  Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice , 2017, Nature Medicine.

[86]  Graham M Lord,et al.  Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. , 2017, Kidney international.

[87]  K. Schwarz,et al.  Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency , 2017, The Journal of clinical investigation.

[88]  Markus M. Rinschen,et al.  A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. , 2016, JCI insight.

[89]  Dustin E. Schones,et al.  Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort , 2016, Proceedings of the National Academy of Sciences.

[90]  R. Müller,et al.  Prohibitin-2 Depletion Unravels Extra-Mitochondrial Functions at the Kidney Filtration Barrier. , 2016, American Journal of Pathology.

[91]  A. Shaw,et al.  New approaches in renal microscopy: volumetric imaging and superresolution microscopy , 2016, Current opinion in nephrology and hypertension.

[92]  Markus M. Rinschen,et al.  The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. , 2016, Human molecular genetics.

[93]  Friedhelm Hildebrandt,et al.  Exploring the genetic basis of early-onset chronic kidney disease , 2016, Nature Reviews Nephrology.

[94]  Catherine C. Robertson,et al.  Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects. , 2016, Journal of the American Society of Nephrology : JASN.

[95]  A. Quyyumi,et al.  Soluble Urokinase Receptor and Chronic Kidney Disease. , 2015, The New England journal of medicine.

[96]  S. Lopes,et al.  Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis , 2015, Nature.

[97]  Adam Byron,et al.  Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly , 2015, Nature Cell Biology.

[98]  I. Greenwald,et al.  The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. , 2015, Developmental cell.

[99]  R. Müller,et al.  Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure , 2015, EMBO molecular medicine.

[100]  N. Boddaert,et al.  Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. , 2014, American Journal of Human Genetics.

[101]  G. Remuzzi,et al.  Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. , 2014, Journal of the American Society of Nephrology : JASN.

[102]  Markus M. Rinschen,et al.  Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier. , 2014, Journal of the American Society of Nephrology : JASN.

[103]  J. Miner,et al.  Feasibility of repairing glomerular basement membrane defects in Alport syndrome. , 2014, Journal of the American Society of Nephrology : JASN.

[104]  B. Smeets,et al.  The emergence of the glomerular parietal epithelial cell , 2014, Nature Reviews Nephrology.

[105]  D. Nathan,et al.  The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview , 2013, Diabetes Care.

[106]  A. Paterson,et al.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. , 2013, The Journal of clinical investigation.

[107]  A. Fanning,et al.  Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes. , 2013, American journal of physiology. Renal physiology.

[108]  J. Wetzels,et al.  Active proteases in nephrotic plasma lead to a podocin‐dependent phosphorylation of VASP in podocytes via protease activated receptor‐1 , 2013, The Journal of pathology.

[109]  J. Squire,et al.  Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? , 2011, Biophysical journal.

[110]  E. Salido,et al.  Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis , 2011, Nature Medicine.

[111]  T. Pawson,et al.  Nck proteins maintain the adult glomerular filtration barrier. , 2009, Journal of the American Society of Nephrology : JASN.

[112]  J. Tavaré,et al.  Nephrin Is Critical for the Action of Insulin on Human Glomerular Podocytes , 2007, Diabetes.

[113]  Tony Pawson,et al.  Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes , 2006, Nature.

[114]  J. Tavaré,et al.  The human glomerular podocyte is a novel target for insulin action. , 2005, Diabetes.

[115]  K. Tryggvason,et al.  Alport's syndrome, Goodpasture's syndrome, and type IV collagen. , 2003, The New England journal of medicine.

[116]  E. Wolski,et al.  Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[117]  D. Uttenweiler,et al.  Podocytes respond to mechanical stress in vitro. , 2001, Journal of the American Society of Nephrology : JASN.

[118]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[119]  L Peltonen,et al.  Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. , 1998, Molecular cell.

[120]  M. Pierson,et al.  [AN UNUSUAL CONGENITAL AND FAMILIAL CONGENITAL MALFORMATIVE COMBINATION INVOLVING THE EYE AND KIDNEY]. , 1963, Journal de genetique humaine.

[121]  S. Howden,et al.  A Toolbox to Characterize Human Induced Pluripotent Stem Cell-Derived Kidney Cell Types and Organoids. , 2019, Journal of the American Society of Nephrology : JASN.

[122]  R. Schiffmann Fabry disease. , 2015, Handbook of clinical neurology.

[123]  V. Nair,et al.  Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. , 2014, Journal of the American Society of Nephrology : JASN.

[124]  K. Endlich,et al.  AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes. , 2011, American journal of physiology. Renal physiology.

[125]  A. Cybulsky Membranous nephropathy. , 2011, Contributions to nephrology.