Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

[1]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[2]  Denis Usvyat,et al.  Incrementally Corrected Periodic Local MP2 Calculations: I. The Cohesive Energy of Molecular Crystals. , 2013, Journal of chemical theory and computation.

[3]  L. Shulenburger,et al.  The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus. , 2015, Nano letters.

[4]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[5]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[6]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[7]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[8]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[9]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[10]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[11]  J. VandeVondele,et al.  Second-Order Møller-Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane Waves Approach. , 2012, Journal of chemical theory and computation.

[12]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[13]  M. Schütz,et al.  Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. II. Beyond the ring approximation. , 2014, The Journal of chemical physics.

[14]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[15]  M. Schütz,et al.  Second Order Local Møller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code , 2010 .

[16]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[17]  M. Schütz,et al.  Periodic local Møller-Plesset second order perturbation theory method applied to molecular crystals: study of solid NH3 and CO2 using extended basis sets. , 2010, The Journal of chemical physics.

[18]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[19]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[20]  A. Grüneis A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal. , 2015, The Journal of chemical physics.

[21]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[22]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[23]  A. Pfitzner Phosphorus remains exciting! , 2006, Angewandte Chemie.

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[25]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[26]  Kailun Yao,et al.  Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. , 2015, Nano letters.

[27]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[28]  D. Usvyat High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane. , 2015, The Journal of chemical physics.

[29]  W. Reckien,et al.  System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  M. Schütz,et al.  Geometrical frustration of an argon monolayer adsorbed on the MgO (100) surface: An accurate periodic ab initio study , 2012 .

[31]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .

[32]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[33]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[34]  Marco Häser,et al.  Covalent Structures of Phosphorus: A Comprehensive Theoretical Study , 1995 .

[35]  Lorenzo Maschio,et al.  Periodic local MP2 method employing orbital specific virtuals. , 2015, The Journal of chemical physics.

[36]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[37]  K. Sankaran,et al.  Electronic properties of hydrogenated silicene and germanene , 2011 .

[38]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[39]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[40]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[41]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[42]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[43]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[44]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[45]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[46]  Bartolomeo Civalleri,et al.  Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH. , 2011, The Journal of chemical physics.

[47]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[48]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[49]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[50]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[51]  Cesare Pisani,et al.  CRYSCOR: a program for the post-Hartree-Fock treatment of periodic systems. , 2012, Physical chemistry chemical physics : PCCP.

[52]  The extended stability range of phosphorus allotropes. , 2014, Angewandte Chemie.

[53]  Barry Marsden,et al.  Graphite thermal expansion relationship for different temperature ranges , 2005 .

[54]  Binghai Yan,et al.  Large-gap quantum spin Hall insulators in tin films. , 2013, Physical review letters.

[55]  Hanchul Kim Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus , 2014 .

[56]  Changfeng Chen,et al.  Phosphorene: Fabrication, Properties, and Applications. , 2015, The journal of physical chemistry letters.

[57]  Kyuho Lee,et al.  Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. , 2009, Journal of chemical theory and computation.

[58]  Denis Usvyat,et al.  Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. , 2013, The Journal of chemical physics.

[59]  S. Grimme,et al.  A dispersion-corrected density functional theory case study on ethyl acetate conformers, dimer, and molecular crystal , 2013, Theoretical Chemistry Accounts.

[60]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[61]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[62]  G. Sansone,et al.  The effect of electron correlation on the adsorption of hydrogen fluoride and water on magnesium fluoride surfaces. , 2015, Physical chemistry chemical physics : PCCP.

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.