Efficient method for variance-based sensitivity analysis

Presented is an efficient method for variance-based sensitivity analysis. It provides a general approach to transforming a sensitivity problem into one uncertainty propagation process, so that various existing approximation techniques (for uncertainty propagation) can be applied to speed up the computation. In this paper, formulations are deduced to implement the proposed approach with one specific technique named Univariate Reduced Quadrature (URQ). This implementation was evaluated with a number of numerical test-cases. Comparison with the traditional (benchmark) Monte Carlo approach demonstrated the accuracy and efficiency of the proposed method, which performs particularly well on the linear models, and reasonably well on most non-linear models. The current limitations with regard to non-linearity are mainly due to the limitations of the URQ method used.

[1]  Shahrokh Shahpar,et al.  Toward Affordable Uncertainty Quantification for Industrial Problems: Part II — Turbomachinery Application , 2017 .

[2]  Russian Federation,et al.  On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index , 1999 .

[3]  Zhenzhou Lu,et al.  Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis , 2017, Reliab. Eng. Syst. Saf..

[4]  Matieyendou Lamboni GLOBAL SENSITIVITY ANALYSIS: AN EFFICIENT NUMERICAL METHOD FOR APPROXIMATING THE TOTAL SENSITIVITY INDEX , 2016 .

[5]  Fabrice Gamboa,et al.  Sensitivity indices for multivariate outputs , 2013, 1303.3574.

[6]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[7]  Saltelli Andrea,et al.  Sensitivity Analysis for Nonlinear Mathematical Models. Numerical ExperienceSensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience , 1995 .

[8]  S. Hora,et al.  A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis , 1990 .

[9]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[10]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[11]  Albert J. Valocchi,et al.  Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion , 2014, Reliab. Eng. Syst. Saf..

[12]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[13]  Andrea Saltelli,et al.  Sensitivity analysis for model output: performance of black box techniques on three international benchmark exercises , 1992 .

[14]  Stefano Tarantola,et al.  Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..

[15]  Bruno Sudret,et al.  Global sensitivity analysis using low-rank tensor approximations , 2016, Reliab. Eng. Syst. Saf..

[16]  K. Shuler,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications , 1973 .

[17]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  David Makowski,et al.  Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models , 2011, Reliab. Eng. Syst. Saf..

[20]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[21]  Shahrokh Shahpar,et al.  AFFORDABLE UNCERTAINTY QUANTIFICATION FOR INDUSTRIAL PROBLEMS: APPLICATION TO AERO-ENGINE FANS , 2018 .

[22]  Chonggang Xu,et al.  Decoupling correlated and uncorrelated parametric uncertainty contributions for nonlinear models , 2013 .

[23]  Stefano Tarantola,et al.  Random balance designs for the estimation of first order global sensitivity indices , 2006, Reliab. Eng. Syst. Saf..

[24]  Thierry Alex Mara,et al.  Variance-based sensitivity indices for models with dependent inputs , 2012, Reliab. Eng. Syst. Saf..

[25]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[26]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[27]  F. Gamboa,et al.  Statistical inference for Sobol pick-freeze Monte Carlo method , 2013, 1303.6447.

[28]  Marin D. Guenov,et al.  Novel Uncertainty Propagation Method for Robust Aerodynamic Design , 2011 .

[29]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[30]  Thierry Alex Mara,et al.  Comparison of some efficient methods to evaluate the main effect of computer model factors , 2008 .

[31]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[32]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[33]  John H. Seinfeld,et al.  Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST) , 1982 .

[34]  R. Cooke Elicitation of expert opinions for uncertainty and risks , 2003 .

[35]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[36]  Shahrokh Shahpar,et al.  Toward Affordable Uncertainty Quantification for Industrial Problems: Part I — Theory and Validation , 2017 .

[37]  L. Shampine Vectorized adaptive quadrature in MATLAB , 2008 .

[38]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[39]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[40]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[41]  Nilay Shah,et al.  Sobol' indices for problems defined in non-rectangular domains , 2016, Reliab. Eng. Syst. Saf..

[42]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[43]  Isabel Pérez-Grande,et al.  Optimization of a commercial aircraft environmental control system , 2002 .

[44]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[45]  Paola Annoni,et al.  Estimation of global sensitivity indices for models with dependent variables , 2012, Comput. Phys. Commun..

[46]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[47]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[48]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[49]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[50]  K. Shuler,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations , 1975 .

[51]  M. Jansen,et al.  Monte Carlo estimation of uncertainty contributions from several independent multivariate sources. , 1994 .

[52]  M. Jansen Analysis of variance designs for model output , 1999 .

[53]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[54]  Sankaran Mahadevan,et al.  Effectively Subsampled Quadratures for Least Squares Polynomial Approximations , 2016, SIAM/ASA J. Uncertain. Quantification.

[55]  David H. Evans An Application of Numerical Integration Techniques to Statistical Tolerancing, III—General Distributions , 1972 .

[56]  Matieyendou Lamboni,et al.  Multivariate global sensitivity analysis for dynamic crop models , 2009 .

[57]  T. Ishigami,et al.  An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[58]  Terry Andres,et al.  Sensitivity analysis of model output: an investigation of new techniques , 1993 .

[59]  F. E. Satterthwaite Random Balance Experimentation , 1959 .

[60]  Byung Man Kwak,et al.  Efficient statistical tolerance analysis for general distributions using three-point information , 2002 .

[61]  Ronald L. Iman,et al.  Comparison of Maximus/Bounding and Bayes/Monte Carlo for fault tree uncertainty analysis , 1986 .

[62]  Zhenzhou Lu,et al.  A new kind of sensitivity index for multivariate output , 2016, Reliab. Eng. Syst. Saf..

[63]  Alberto Traverso,et al.  Comparative Analysis of Methodologies for Uncertainty Propagation and Quantification , 2017 .

[64]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[65]  Daniel Watzenig,et al.  Statistical robust design using the unscented transformation , 2005 .

[66]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[67]  Pan Wang,et al.  Multivariate global sensitivity analysis for dynamic models based on wavelet analysis , 2018, Reliab. Eng. Syst. Saf..