Local Terminations and Distributed Computability in Anonymous Networks

We investigate the computability of distributed tasks in reliable anonymous networks with arbitrary knowledge. More precisely, we consider tasks computable with local termination, i.e., a node knows when to stop to participate in a distributed algorithm, even though the algorithm is not necessarily terminated elsewhere. We also study weak local termination, that is when a node knows its final value but continues to execute the distributed algorithm, usually in order to provide information to other nodes. We give the first characterization of distributed tasks that can be computed with weak local termination and we present a new characterization of tasks computed with local termination. For both terminations, we also characterize tasks computable by polynomial algorithms.

[1]  Leslie Lamport,et al.  Generalized Consensus and Paxos , 2005 .

[2]  Gerard Tel,et al.  Introduction to Distributed Algorithms: Contents , 2000 .

[3]  Masafumi Yamashita,et al.  Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases , 1996, IEEE Trans. Parallel Distributed Syst..

[4]  Jérémie Chalopin Algorithmique distribuée, calculs locaux et homomorphismes de graphes , 2006 .

[5]  Masafumi Yamashita,et al.  Computing functions on asynchronous anonymous networks , 2005, Mathematical systems theory.

[6]  Idit Keidar,et al.  How to Choose a Timing Model? , 2007, 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07).

[7]  Rachid Guerraoui,et al.  Deconstructing paxos , 2003, SIGA.

[8]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[9]  Boleslaw K. Szymanski,et al.  Synchronized Distributed Termination , 1985, IEEE Transactions on Software Engineering.

[10]  Sebastiano Vigna,et al.  Fibrations of graphs , 2002, Discret. Math..

[11]  Rachid Guerraoui,et al.  How fast can eventual synchrony lead to consensus? , 2005, 2005 International Conference on Dependable Systems and Networks (DSN'05).

[12]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[13]  Sam Toueg,et al.  Unreliable failure detectors for reliable distributed systems , 1996, JACM.

[14]  Yves Métivier,et al.  An Efficient Message Passing Election Algorithm based on Mazurkiewicz's Algorithm , 2007, Fundam. Informaticae.

[15]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[16]  Friedemann Mattern,et al.  Algorithms for distributed termination detection , 1987, Distributed Computing.

[17]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[18]  Rachid Guerraoui,et al.  The overhead of consensus failure recovery , 2007, Distributed Computing.

[19]  Paola Flocchini,et al.  Sorting and election in anonymous asynchronous rings , 2004, J. Parallel Distributed Comput..

[20]  Wiebe van der Hoek,et al.  SOFSEM 2007: Theory and Practice of Computer Science , 2007 .

[21]  Nancy A. Lynch,et al.  Consensus in the presence of partial synchrony , 1988, JACM.

[22]  Yves Métivier,et al.  About the Termination Detection in the Asynchronous Message Passing Model , 2007, SOFSEM.

[23]  Eli Gafni,et al.  Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony , 1998, PODC '98.

[24]  Idit Keidar,et al.  On the cost of fault-tolerant consensus when there are no faults: preliminary version , 2001, SIGA.

[25]  Danny Dolev,et al.  Early stopping in Byzantine agreement , 1990, JACM.

[26]  Rachid Guerraoui,et al.  The inherent price of indulgence , 2002, PODC '02.

[27]  Sebastiano Vigna,et al.  Universal dynamic synchronous self–stabilization , 2002, Distributed Computing.

[28]  Anca Muscholl,et al.  About the local detection of termination of local computations in graphs , 1997, SIROCCO.

[29]  Edsger W. Dijkstra,et al.  Termination Detection for Diffusing Computations , 1980, Inf. Process. Lett..

[30]  Idit Keidar,et al.  Timeliness, failure-detectors, and consensus performance , 2006, PODC '06.

[31]  Dana Angluin,et al.  Local and global properties in networks of processors (Extended Abstract) , 1980, STOC '80.

[32]  Rachid Guerraoui,et al.  The information structure of indulgent consensus , 2004, IEEE Transactions on Computers.

[33]  Sebastiano Vigna,et al.  Symmetry Breaking in Anonymous Networks: Characterizations , 1996, ISTCS.

[34]  Leslie Lamport,et al.  Lower bounds for asynchronous consensus , 2006, Distributed Computing.

[35]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[36]  Andrzej Pelc,et al.  Leader Election in Rings with Nonunique Labels , 2004, Fundam. Informaticae.

[37]  Paul G. Spirakis,et al.  Computing on a partially eponymous ring , 2006, Theor. Comput. Sci..

[38]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[39]  Sam Toueg,et al.  The weakest failure detector for solving consensus , 1996, JACM.

[40]  Rachid Guerraoui,et al.  Indulgent algorithms (preliminary version) , 2000, PODC '00.

[41]  Antoni W. Mazurkiewicz Distributed Enumeration , 1997, Inf. Process. Lett..

[42]  Sebastiano Vigna,et al.  An Effective Characterization of Computability in Anonymous Networks , 2001, DISC.

[43]  Sebastiano Vigna,et al.  Computing anonymously with arbitrary knowledge , 1999, PODC '99.