Augmented efficiency of azithromycin for MRSA ocular infections management: Limonene-based nanostructured-lipid carriers in-situ approach

[1]  T. Gratieri,et al.  In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone , 2022, Journal of Molecular Liquids.

[2]  Hoda A Elmaradny,et al.  Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. , 2022, International journal of pharmaceutics.

[3]  M. Khalid,et al.  Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity , 2022, Gels.

[4]  A. Sreepian,et al.  Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus , 2022, TheScientificWorldJournal.

[5]  Mohammed M Mehanna,et al.  siRNA nanohybrid systems: false hope or feasible answer in cancer management. , 2022, Therapeutic delivery.

[6]  Uxía Regueiro,et al.  Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. , 2022, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  D. Clemens,et al.  A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers , 2021, Scientific Reports.

[8]  Walaa F. Alsanie,et al.  Itraconazole loaded nano-structured lipid carrier for topical ocular delivery: Optimization and evaluation , 2021, Saudi journal of biological sciences.

[9]  Z. Al-Oanzi,et al.  Formulation of Chitosan-Coated Piperine NLCs: Optimization, In Vitro Characterization, and In Vivo Preclinical Assessment , 2021, AAPS PharmSciTech.

[10]  R. Ullah,et al.  Enhancing Dissolution Rate and Antibacterial Efficiency of Azithromycin through Drug-Drug Cocrystals with Paracetamol , 2021, Antibiotics.

[11]  M. Bilal,et al.  Pluronic F127/Doxorubicin microemulsions: Preparation, characterization, and toxicity evaluations , 2021, Journal of Molecular Liquids.

[12]  A. Singh,et al.  Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. , 2021, ACS biomaterials science & engineering.

[13]  R. Lawrence,et al.  Journey of Limonene as an Antimicrobial Agent , 2021, Journal of Pure and Applied Microbiology.

[14]  M. Bin-Jumah,et al.  Formulation and Optimization of Nano Lipid Based Oral Delivery Systems for Arthritis , 2021, Coatings.

[15]  Ibrahim A. Naguib,et al.  Novel chitosan-coated niosomal formulation for improved management of bacterial conjunctivitis: A highly permeable and efficient ocular nanocarrier for azithromycin. , 2021, Journal of pharmaceutical sciences.

[16]  M. Mehanna,et al.  Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer , 2021, Pharmaceutics.

[17]  H. Coutinho,et al.  Modulation of Drug Resistance by Limonene: Inhibition of Efflux Pumps in Staphylococcus aureus Strains RN-4220 and IS-58. , 2021, Current drug metabolism.

[18]  H. Wahab,et al.  In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design , 2020, Heliyon.

[19]  S. Baboota,et al.  Boosting the Brain Delivery of Atazanavir through Nanostructured Lipid Carrier-Based Approach for Mitigating NeuroAIDS , 2020, Pharmaceutics.

[20]  M. Bin-Jumah,et al.  Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity , 2020, International journal of nanomedicine.

[21]  A. El-Gindy,et al.  Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases , 2020 .

[22]  Mohammed M Mehanna,et al.  Levofloxacin-loaded naturally occurring monoterpene-based nanoemulgel: a feasible efficient system to circumvent MRSA ocular infections , 2020, Drug development and industrial pharmacy.

[23]  Hoda A Elmaradny,et al.  Tailored Limonene-Based Nanosized Microemulsion: Formulation, Physicochemical Characterization and In Vivo Skin Irritation Assessment , 2020, Advanced pharmaceutical bulletin.

[24]  Ajazuddin,et al.  Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. , 2020, Journal of controlled release : official journal of the Controlled Release Society.

[25]  S. Dubey,et al.  Nanocarriers for ocular drug delivery: current status and translational opportunity , 2020, RSC advances.

[26]  S. Majumdar,et al.  Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis , 2020, Pharmaceutics.

[27]  N. Farhadian,et al.  Enhanced delivery of melatonin loaded nanostructured lipid carriers during in vitro fertilization: NLC formulation, optimization and IVF efficacy , 2020, RSC advances.

[28]  K. Hosny,et al.  Preparation and Optimization of In Situ Gel Loaded with Rosuvastatin-Ellagic Acid Nanotransfersomes to Enhance the Anti-Proliferative Activity , 2020, Pharmaceutics.

[29]  M. Yasir,et al.  Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery , 2020, Advanced pharmaceutical bulletin.

[30]  Ameeduzzafar,et al.  BBD-Based Development of Itraconazole Loaded Nanostructured Lipid Carrier for Topical Delivery: In Vitro Evaluation and Antimicrobial Assessment , 2020, Journal of Pharmaceutical Innovation.

[31]  J. Palaskar,et al.  The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus , 2020, Biomaterial investigations in dentistry.

[32]  Zhichang Sun,et al.  Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes , 2019, Molecules.

[33]  Liping Wang,et al.  Nanostructured lipid carriers with exceptional gastrointestinal stability and inhibition of P-gp efflux for improved oral delivery of tilmicosin. , 2019, Colloids and surfaces. B, Biointerfaces.

[34]  S. Bhattacharyya,et al.  Effect of Surfactant on Azithromycin Dihydrate Loaded Stearic Acid Solid Lipid Nanoparticles , 2019, Turkish journal of pharmaceutical sciences.

[35]  S. Swift,et al.  Topical semifluorinated alkane based azithromycin suspension for the management of ocular infections. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[36]  R. B. Walker,et al.  Short Term Stability Testing of Efavirenz-Loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) Dispersions , 2019, Pharmaceutics.

[37]  M. Ghorab,et al.  Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study , 2019, Journal of Drug Delivery Science and Technology.

[38]  V. Khutoryanskiy,et al.  Penetration Enhancers in Ocular Drug Delivery , 2019, Pharmaceutics.

[39]  M. Klarić,et al.  Azithromycin‐loaded liposomes for enhanced topical treatment of methicillin‐resistant Staphyloccocus aureus (MRSA) infections , 2018, International journal of pharmaceutics.

[40]  Abdelhalim I. Elassasy,et al.  Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies , 2018, International journal of pharmaceutics.

[41]  B. Coats,et al.  Changes in Vitreoretinal Adhesion With Age and Region in Human and Sheep Eyes , 2018, Front. Bioeng. Biotechnol..

[42]  Yuanyuan Liu,et al.  Research progress of in-situ gelling ophthalmic drug delivery system , 2018, Asian journal of pharmaceutical sciences.

[43]  R. Humphries,et al.  CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests , 2018, Journal of Clinical Microbiology.

[44]  R. O'Callaghan The Pathogenesis of Staphylococcus aureus Eye Infections , 2018, Pathogens.

[45]  Li Yang,et al.  Novel antimicrobial peptide–modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus , 2016, International journal of nanomedicine.

[46]  O. Pérez,et al.  The Hen’s Egg Test on Chorioallantoic Membrane , 2016, International journal of toxicology.

[47]  N. Elgindy,et al.  Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence , 2016, Expert opinion on drug delivery.

[48]  Ameeduzzafar,et al.  Colloidal drug delivery system: amplify the ocular delivery , 2016, Drug delivery.

[49]  Patrick S Doyle,et al.  Nanoemulsions: formation, properties and applications. , 2016, Soft matter.

[50]  D. Mcclements,et al.  Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. , 2016, Food chemistry.

[51]  I. Rupenthal,et al.  In vitro and ex vivo corneal penetration and absorption models , 2016, Drug Delivery and Translational Research.

[52]  M. Balouiri,et al.  Methods for in vitro evaluating antimicrobial activity: A review☆ , 2015, Journal of pharmaceutical analysis.

[53]  Abdelwahab Omri,et al.  Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. , 2015, The Journal of antimicrobial chemotherapy.

[54]  A. Galembeck,et al.  Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen's egg test and inhibition of Streptococcus mutans biofilm formation. , 2015, International journal of antimicrobial agents.

[55]  G. E. El Maghraby,et al.  Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: in vitro and in vivo evaluation , 2015, Expert opinion on drug delivery.

[56]  L. T. Lim,et al.  Common eye drops and their implications for pH measurements in the management of chemical eye injuries. , 2014, International journal of ophthalmology.

[57]  R. Shamma,et al.  Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia , 2014, International journal of nanomedicine.

[58]  E. Souto,et al.  Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. , 2014, International journal of pharmaceutics.

[59]  Wei Zhu,et al.  Azithromycin Reduces the Production of α-hemolysin and Biofilm Formation in Staphylococcus aureus , 2014, Indian Journal of Microbiology.

[60]  E. Bendas,et al.  The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[61]  M. Imani,et al.  Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles. , 2014, Carbohydrate polymers.

[62]  S. Samani,et al.  A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique. , 2013, Chemistry and physics of lipids.

[63]  I. Kaur,et al.  Nanolipid carrier-based thermoreversible gel for localized delivery of docetaxel to breast cancer , 2013, Cancer Nanotechnology.

[64]  A. Seyfoddin,et al.  Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir , 2013, Drug development and industrial pharmacy.

[65]  Yhu-Chering Huang,et al.  Staphylococcus aureus Ocular Infection: Methicillin-Resistance, Clinical Features, and Antibiotic Susceptibilities , 2012, PloS one.

[66]  Mustafa Birinci,et al.  Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders , 2009 .

[67]  Nicholas A Peppas,et al.  Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[68]  F. Vanderbist,et al.  In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. , 2008, International journal of antimicrobial agents.

[69]  Peder Wolkoff,et al.  The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein. , 2005, Toxicology letters.

[70]  Chong-K. Kim,et al.  Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. , 2001, International journal of pharmaceutics.

[71]  K. Audus,et al.  Microparticulate uptake mechanisms of in‐vitro cell culture models of the respiratory epithelium , 2001, The Journal of pharmacy and pharmacology.

[72]  P. Constantinides,et al.  Lipid Microemulsions for Improving Drug Dissolution and Oral Absorption: Physical and Biopharmaceutical Aspects , 1995, Pharmaceutical Research.

[73]  N. P. Luepke,et al.  The HET-CAM test: An alternative to the draize eye test , 1986 .

[74]  A. Zafar Development of Oral Lipid Based Nano-formulation of Dapagliflozin: Optimization, in vitro Characterization and ex vivo Intestinal Permeation Study. , 2020, Journal of oleo science.

[75]  C. Nativi,et al.  In situ mucoadhesive‐thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[76]  C. J. Jones,et al.  Bacterial Extracellular Polysaccharides in Biofilm Formation and Function , 2015, Microbiology spectrum.

[77]  Ajay Kumar,et al.  Curcumin Loaded Nano Cubosomal Hydrogel: Preparation, In Vitro Characterization and Antibacterial Activity , 2015 .

[78]  Arushi Gupta,et al.  In-Situ Gelling System : A Novel Approach for Ocular Drug Delivery , 2012 .

[79]  D. Petsev,et al.  A model for the temperature-dependent interactions in uncharged droplet microemulsions , 1997 .