Sat4j, un moteur libre de raisonnement en logique propositionnelle. (Sat4j, an open reasoning platform for propositional reasoning)

One of the strength of Eclipse, the well-known open platform for software development, is its extensibility made possible by the built-in pluggability mechanisms. However those pluggability mechanisms only reveal their full potential when extensions created by others are made easy to distribute and obtain. The purpose of Eclipse p2 project is to build a platform addressing the challenges of distribution and obtention of Eclipse and its extensions, which poses the same dependency management issues than for component based systems. This paper focuses on the dependency management aspect of p2. It describes the metadata used to express dependencies, the overall functioning of our resolver and a description of our propositional constraints based encoding. To conclude we describe the challenges to address in future releases.

[1]  Mary-Anne Williams,et al.  Transmutations of Knowledge Systems , 1994, KR.

[2]  Chu Min Li,et al.  Integrating Equivalency Reasoning into Davis-Putnam Procedure , 2000, AAAI/IAAI.

[3]  Souhila Kaci,et al.  Weakening conflicting information for iterated revision and knowledge integration , 2001, Artificial Intelligence.

[4]  Daniel Lehmann,et al.  Another perspective on default reasoning , 1995, Annals of Mathematics and Artificial Intelligence.

[5]  Bernhard Nebel,et al.  How Hard is it to Revise a Belief Base , 1996 .

[6]  Steven Prestwich,et al.  Randomised Backtracking for Linear Pseudo-Boolean Constraint Problems , 2002 .

[7]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[8]  Allen Van Gelder Autarky Pruning in Propositional Model Elimination Reduces Failure Redundancy , 2004, Journal of Automated Reasoning.

[9]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[10]  H. Prade,et al.  Possibilistic logic , 1994 .

[11]  Torsten Schaub,et al.  A Comparative Study of Logic Programs with Preference: Preliminary Report , 2001, Answer Set Programming.

[12]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2003, J. Symb. Comput..

[13]  Mary-Anne Williams,et al.  Towards a Practical Approach to Belief Revision: Reason-Based Change , 1996, KR.

[14]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[15]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[16]  Allen Van Gelder,et al.  Satisfiability testing with more reasoning and less guessing , 1995, Cliques, Coloring, and Satisfiability.

[17]  Geoff Sutcliffe,et al.  Evaluating general purpose automated theorem proving systems , 2001, Artif. Intell..

[18]  Allen Van Gelder Extracting (Easily) Checkable Proofs from a Satisfiability Solver that Employs both Preorder and Postorder Resolution , 2002, ISAIM.

[19]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[20]  J. M. Larrazabal,et al.  Reasoning about change , 1991 .

[21]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[22]  Allen Van Gelder Generalizations of Watched Literals for Backtracking Search , 2002, ISAIM.

[23]  Hantao Zhang,et al.  An Efficient Algorithm for Unit Propagation , 1996 .

[24]  Stéphane Bressan,et al.  A SAT approach to query optimization in mediator systems , 2005, Annals of Mathematics and Artificial Intelligence.

[25]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[26]  Allen Van Gelder,et al.  Lemma and cut strategies for propositional model elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[27]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[28]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[29]  Rachel Anne Bourne,et al.  Default reasoning using maximum entropy and variable strength defaults , 1999 .

[30]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[31]  Mary-Anne Williams,et al.  Iterated Theory Base Change: A Computational Model , 1995, IJCAI.

[32]  Allen Van Gelder,et al.  Persistent and Quasi-Persistent Lemmas in Propositional Model Elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[33]  Inês Lynce,et al.  Efficient data structures for backtrack search SAT solvers , 2005, Annals of Mathematics and Artificial Intelligence.

[34]  Inês Lynce,et al.  Stochastic Systematic Search Algorithms for Satisfiability , 2001, Electron. Notes Discret. Math..

[35]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[36]  Philippe Chatalic,et al.  SatEx: A Web-based Framework for SAT Experimentation , 2001, Electron. Notes Discret. Math..

[37]  Reijo Sulonen,et al.  Representing Configuration Knowledge With Weight Constraint Rules , 2001, Answer Set Programming.

[38]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[39]  Mary-Anne Williams,et al.  SATEN: An Object-Oriented Web-Based Revision and Extraction Engine , 2000, ArXiv.

[40]  Mary-Anne Williams,et al.  Applications of Belief Revision , 1996, Transactions and Change in Logic Databases.

[41]  Georg Gottlob,et al.  Complexity of Propositional Knowledge Base Revision , 1992, CNKBS.

[42]  J. Lang Possibilistic Logic: Complexity and Algorithms , 2000 .

[43]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[44]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[45]  Lakhdar Sais,et al.  Iterated Syntax-Based Revision in a Nonmonotonic Setting , 2001 .

[46]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[47]  Richmond H. Thomason,et al.  Desires and Defaults: A Framework for Planning with Inferred Goals , 2000, KR.

[48]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[49]  Benjamin W. Wah,et al.  A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..

[50]  Hans van Maaren,et al.  Solving satisfiability problems using elliptic approximations - effective branching rules , 2000, Discret. Appl. Math..

[51]  Sarit Kraus,et al.  Combining Knowledge Bases Consisting of First Order Theories , 1991, ISMIS.

[52]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[53]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .